(4) 激光熔覆成形(LCF - Laser Cladding Forming)
LCF 技术的工作原理与SLS 技术基本相同,通过对工作台数控,实现激光束对粉末的扫描、熔覆,最终成形出所需形状的零件。研究结果表明: 零件切片方式、激光熔覆层厚度、激光器输出功率、光斑大小、光强分布、扫描速度、扫描间隔、扫描方式、送粉装置、送粉量及粉末颗粒的大小等因素均对成形零件的精度和强度有影响。激光熔覆成形能制成非常致密的金属零件,因而具有良好的应用前景。美国Michigan 的POM 公司正在研制直接金属成型(Direct Metal Deposition ,DMD) 技术,用激光融化金属粉末,能一次制作出质地均匀、强度高的金属零件。
(5) 激光近形制造(LENS - Laser Engineering Net Shaping)
LENS技术是将SLS技术和LCF技术相结合,并保持了这两种技术的优点。选用的金属粉末有三种形式:单一金属;金属加低熔点金属粘结剂;金属加有机粘结剂。由于采用的是铺粉方式,所以不管使用哪种形式的粉末, 激光烧结后的金属的密度较低、多孔隙、强度较低。要提高烧结零件强度,必须进行后处理,如浸渗树脂、低熔点金属,或进行热等静压处理。但这些后处理会改变金属零件的精度。另外,由于要进行直接金属材料烧结,LENS 中所用的激光器必须是大功率的。
3、研究现状
美国3DSystems 公司1988 年生产出世界上第一台SLA250 型光固化快速造型机,开创了LRP 技术迅速发展和推广应用的新纪元。美国在设备研制、生产销售方面占全球主导地位,其发展水平及趋势基本代表了世界的发展水平及趋势。欧洲和日本也不甘落后,纷纷进行相关技术研究和设备研发。香港和台湾比内地起步早,台湾大学拥有LOM 设备,台湾各单位及军方安装多台进口SL 系列设备。香港生产力促进局和香港科技大学、香港理工大学、香港城市大学等都拥有RP 设备,其重点是有关技术的应用与推广。
国内自20 世纪90 年代初开始进行研究,现有西安交通大学、华中科技大学、清华大学、北京隆源公司多所研究单位自主开发了成型设备并实现产业化。其中,西安交大生产的紫外光CPS 系列光固化成型系统快速成型机等新技术,引起了国内外的高度重视;华中科技大学研究LOM、SLS 工艺,推出了系列成型机和成型材料; 清华大学主要研究RP方面的现代成型学理论,并开展了基于SL 工艺的金属模具的研究;北京隆源公司主要研究SLS 系列成型设备和配套材料并承接相关制造工程项目。
4、LRP 的应用
激光快速造型技术已在汽车、家电、通讯、航空、工业造型、医疗、考古等行业得到日益广泛的应用,前景广阔。主要的应用领域:
(1) 概念模型制造和功能测试
将设计构想转换成实体模型,具有更好的直观性和启示性,可充当交流沟通中介物和更有利于产品设计评估。产品零件原型具有足够的强度,可用于产品受载应力应变实验分析。#p#分页标题#e#
(2) 快速模具制造和快速工具制造
现代模具制造中缩短周期的关键之一是利用快速成型技术生成模型,结合精铸、电极研磨等技术快速制造出所需的功能模具,其制造周期较之传统的数控切削方法可缩短而成本下降。但是,LRP技术存在一些目前尚未很好解决的关键问题,主要是成型机理尚未完全清楚,成型能量消耗非常高,成型精度有待进一步提高等,从而制约了其进一步产业应用。
5、未来发展趋势
LRP 技术正在发生巨大的变化,主要体现在新技术、新工艺及信息网络化等方面,其未来发展方向包括:
(1) 研究新的成型工艺方法,在现有的基础上,拓宽激光快速成型技术的应用,开展新的成型工艺的探索。
(2) 开发新设备和开发新材料。LRP 设备研制向两个方向发展: 自动化的桌面小型系统,主要用于原型制造;工业化大型系统,用于制造高精度、高性能零件。成型材料的研发及应用是目前LRP 技术的研究重点之一。发展全新材料,特别是复合材料,如纳米材料、非均质材料、功能材料是当前的研究热点。
激光快速成型技术是多学科交叉融合一体化的技术系统,正在不断研究开发和推广应用中,与生物科学交叉的生物制造、与信息科学交叉的远程制造、与纳米科学交叉的微机电系统等为它集成制造提供了广阔的发展空间。随着科学技术和现代工业的发展,它对制造业的作用日益重要并趋向更高的综合。
转载请注明出处。