阅读 | 订阅
阅读 | 订阅
学术论文

光纤激光器浅论

激光制造通讯员 来源:广东星之球2010-12-29 我要评论(0 )   

光纤激光器浅论 光纤激光器综述摘要: 光纤激光器作为光源在光通信领域已得到广泛应用,而随着大功率双保层光纤激光器的出现,其应用正向着激光加工、激光测距、激光雷...

光纤激光器综述摘要:



光纤激光器作为光源在光通信领域已得到广泛应用,而随着大功率双保层光纤激光器的出现,其应用正向着激光加工(laser oem)、激光测距、激光雷达、激光艺术成像、激光防伪和生物医疗等更广阔的领域迅速扩展。本文以下内容概述了光纤激光器的原理、特点、应用及其发展前景。



一.光纤激光器的简述



光纤激光器和放大器的研究与应用引起了广泛的重视和兴趣,已能制备以硅和氟化铅为基质的掺杂稀土金属元素的光纤。用这些光纤制作成光源或光放大器在降低光通信系统的成本方面具有巨大的潜力。接铰和饵离子的光纤激光器已有多种波长的输出,包括900nm,1060nm和1550nm等。用输出波长为800nm的I‘D作为泵浦源也可以获得光通信重要窗口波长(1550nm)的输出。



激光输出诺可以通过改变稀土离子所处的玻璃基质进行改变。由掺杂稀土元素离子的氟化错光纤可以在红外区产生波长为1050nm,1350nm,l 380nm和l 550nm的激光输出,其中1350nm波长非常有价值,因为利用以硅为基质的光纤要想得到这个波长的输出非常困难。此外,这种光纤能在2.08ftm,2.3f4m和2.7Pm的中红外波长区产生激光输出也具有十分重要的价值。这种光源可能在通信,医学,大气通信和光谱学方面得到应用。



光纤激光器的输出方式可以是连续的,也可以是脉冲的。光纤激光器的调Q和锁模以及亚纳秒脉冲业已获得。光纤激光器可以在其整个荧光谱范围内进行调节输出。最重要的是可以获得窄带宽,单纵模的输出。因此也可用于相干通信以及其他单色性要求较高的应用场合。光纤放大器的优越性能以及用LD作为泵浦源实现了放大,使其在光通信系统中的应用越来越广泛。



在过去的几年中,光纤激光器和放大器得到了飞速的发展,世界上许多实验室都卷入了这方面的研究工作。这些研究工作涉及下述所提到的所有方面。以后将会利用可见和红外波长区的稀土元素跃迁,发现更多的谱线以满足各种不同的需要。光纤中的光学过程的理论和基础研究也将进一步发展以优化其性能。



实验研究还需要进一步器件化以及满足实际需要。对新型光纤和谐振腔的研究还将继续。高功率的窄脉冲以及偏振控制,可调谐线宽输出都是应用所需要的。与光纤兼容的调制器和隔离器也是目前所急需的。光纤激光器的研究无疑将刺激光纤器件的发展。光纤放大器在局域的和广域的光通信系统中应用前景广阔,这些都需要进一步的研究。



目前有关光纤激光器和放大器的研究大部分来自与光通信有关的实验室和研究机构,因为他们在光纤制备方面得天独厚,但实际上在其它领域光纤激光器和放大器的应用也初见端倪,例如光谱学,非线性光学,计量学,全息学,传感器和医学等领域,甚至在印刷和滑雪过程中。我们将会看到,在整个国际科技界中涉及光纤激光器的技术领域将会越来越多。



二.光纤激光器原理 



  利用掺杂稀土元素的研制成的放大器给光波技术领域带来了革命性的变化。由于任何光放大器都可通过恰当的反馈机制形成器,因此光纤激光器可在放大器的基础上开发。目前开发研制的光纤激光器主要采用掺稀土元素的作为增益介质。由于光纤激光器中纤芯很细,在泵浦光的作用下内极易 形成高功率密度,造成工作物质的能级“粒子数反转”。因此,当适当加入正反馈回路(构成谐振腔)便可形成振荡。另外由于基质具有很宽的荧 光谱,因此,光纤激光器一般都可做成可调谐的,非常适合于WDM系统应用。



  和半导体器相比,光纤激光器的优越性主要体现在:光纤激光器是波导式结构,可容强泵浦,具有高增益、转换效率高、阈值低、输出光束质量好、线宽窄、结构简单、可靠性高等特性,易于实现和的耦合。



  我们可以从不同的角度对光纤激光器进行分类,如根据光纤激光器的谐振腔采用的结构可以将其分为Fabry-Perot腔和环行腔两大类。也可根据输出 波长数目将其分为单波长和多波长等。对于不同类型光纤激光器的特性主要应考虑以下几点:(1)阈值应越低越好;(2)输出功率与抽运光功率的线性要好; (3)输出偏振态;(4)模式结构;(5)能量转换效率;(6)器工作波长等。



     三、包层泵浦器技术



  双包层的出现无疑是领域的一大突破,它使得高功率的光纤激光器和高功率的光放大器的制作成为现实。自1988年E Snitzer首次描述包层泵浦器以来,包层泵浦技术已被广泛地应用到器和放大器等领域,成为制作高功率光纤激光器首选途径。图1 (a)示出一种双包层的截面结构。不难看出,包层泵浦的技术基础是利用具有两个同心纤芯的特种掺杂。一个纤芯和传统的单模纤芯相似,专用于传 输信号光,并实现对信号光的单模放大。而大的纤芯则用于传输不同模式的多模泵浦光(如图1(b)所示)。这样,使用多个多模二极管同时耦合至包层 上,当泵浦光每次横穿过单模纤芯时,就会将纤芯中稀土元素的原子泵浦到上能级,然后通过跃迁产生自发辐射光,通过在内设置的光栅的选频作用, 特定波长的自发辐射光可被振荡放大而最后产生输出。目前,该技术被称为多模并行包层泵浦技术(Cladding pumped technology),法国Keopsys公司在该技术上形成了一专利,称为“V-Groove Technologe”。


多模并行包层泵浦技术特性决定了该类光纤激光器有以下几方面的突出性能。



1、高功率



  一个多模泵浦二极管模块组可辐射出100瓦的光功率,多个多模泵浦二极管并行设置,即可允许设计出很高功率输出的光纤激光器。



2、无需热电冷却器



  这种大功率的宽面多模二极管可在很高的温度下工作,只须简单的风冷,成本低。



3、很宽的泵浦波长范围



  高功率的光纤激光器内的活性包层掺杂了铒/镱稀土元素,有一个宽且又平坦的光波吸收区(930-970nm),因此,泵浦二极管不需任何类型的波长稳定装置



4、效率高



  泵浦光多次横穿过单模纤芯,因此其利用率高。



5、高可靠性



  多模泵浦二极管比起单模泵浦二极管来其稳定性要高出很多。其几何上的宽面就使得光纤激光器的断面上的光功率密度很低且通过活性面的电流密度亦很低。这样一 来,泵浦二极管其可靠运转寿命超过100万小时。 目前实现包层泵浦器的技术概括起来可分为线形腔单端泵浦、线形腔双端泵浦、全环形腔双包层器三大类,不同特色的双包层器可由 该三种基本类型拓展得到。   OFC’2002的一篇文献采用如图2所示腔体结构,实现了输出功率为3.8W、阈值为1.7W,倾斜效率高达85%的新型包层泵浦器 [1]。在产品技术方面,美国IPG公司异军突起,已开发出700W的掺镱双包层光纤激光器,并宣称将推出2000W的光纤激光器。


     四、拉曼光纤激光器技术



  拉曼光放大技术为长距离传输提供了一种新的获取功率预算的手段,成为关注焦点。对于拉曼放大泵源,方法之一是采用多只14XXnm泵浦器通过偏振 复用获得拉曼泵源,但其成本相对较高且结构复杂。方法二是采用拉曼器(RFL)来产生特定波长的大功率,目前该技术已得到相当程度的发展并形 成了商用产品(如美国IPG、法国Keosys等公司均可提供5W的拉曼放大泵浦模块),并被认为是用于拉曼放大和远泵EDFA放大应用的合理光源。



4.1 线形腔拉曼光纤激光器



  若从线形腔拉曼器的输出波长来划分,可以分为单波长和多波长拉曼器两大类。不同线形拉曼器的结构基本相似,都采用布拉格光栅 作为其谐振腔的反射镜。就RFL所采用的有源增益介质来看,通常采用掺GeO2的掺杂作为增益介质,最近的报道是采用掺P2O5的掺杂作为增益介质,两者的区别在于所取得的Stock偏移不同,一般,掺GeO2的掺杂为440cm-1,而掺P2O5的掺杂为1330cm-1,因此采用 P2O5掺杂所需要的拉曼频率变换的次数要少,可以提高效率并降低RFL的复杂度。N.Kurukithoson等在ECOC’2001会议中报道了 一个采用二级拉曼变换获得1480nm输出的RFL实验,其泵浦光波长为1061nm[2],和采用掺GeO2的掺杂的RFL相比,减少了一级拉 曼上变换。ECOC’2001的另一篇论文中报道了采用掺P制作的1480nm单波长拉曼器实现+28dBm输出的EDFA[3]。 OFC’2001会议中有一篇论文报道了以二级Stocks输出的Raman光纤激光器作为泵浦源激励单模产生超连续谱的实验[4]。它由拉曼激光器和超连续(SC)腔体两部分构成,其中Raman光纤激光器器工作原理图见图3。在掺镱激光器的泵浦下,以掺镨为工作物质输出。泵浦光为 1064nm,输出脉冲为1483.4nm的(二级Stocks),输出功率为2.22W。


  近期浮现出的另一种称为多波长拉曼光纤激光器 (MWRFL)引起了广泛的注意,其中双波长拉曼光纤激光器(2lRFL)和三波长拉曼光纤激光器(3lRFL)已成功演示,IPG等已开始形成产品。



  阿尔卡特公司在OFC’2002会议上报道的一种可重构三波长拉曼器(3lRFL)图4所示[5],得到了输出波长分别为1427nm、 1455nm和1480nm的输出,可用于C+L波段的拉曼放大器中。另外通过调整输出耦合器,每个波长的输出功率可在50mW—400mW范围内可 调。整个3lRFL的主体部分由11只光栅(FBG)和300米的掺P组成,并以输出波长为1117nm的Yb3+包层泵浦器作为泵浦 源。其内部的Stocks功率迁移如图5所示。其基本的原理分为以下三步:首先,在1117nm泵浦光的作用下,利用P2O5产生频移,得到1312nm 的一级Stocks分量;然后在一级Stocks的作用下,利用石英的频移,得到1375nm的二级Stocks分量;最后,通过再次利用石英的 频移,同时得到1427.0nm、1455.0nm和1480.0nm的输出。应当指出,由于各拉曼峰值相距较远,因此,不同Stocks之间的交互 作用是不可忽视的。如图3虚线所示,1427.0nm的Stocks分量泵浦1455.0nm和1480.0nm并使之获得增益,同理,1312nm的 Stocks分量可使1375nm、1427nm、1455nm和1480nm获得额外的拉曼增益。


  OFC’2002的另外两篇论文报道了在泵浦光的作用下产生四级Stocks分量的可重构Raman光纤激光器,其输出波长均为 1428nm、1445nm和1466nm[6][7]。OFC’2001的一篇论文报道了一个3lRFL,其输出谱线分别为:1427nm的谱线谱宽为 0.8nm,1455nm和1480nm的谱线谱宽为0.4nm[8]。


4.2 环行腔拉曼光纤激光器



  环行腔结构在技术中具有重要的地位和作用,也是构建拉曼器的另一种 重要方式。OFC’2001中的一篇论文报道了一种双波长的环行拉曼光纤激光器(2lRFL)[9],其结构如图6所示。图中,除光栅1480A的反 射率为90%外,其他的光栅的反射率均大于99%,拉曼A和B是长度分别为120米和220米的色散补偿(DCF)。在工作波长为 1313nm的Nd:YLF光纤激光器作为泵浦源作用下,该器的二级Stocks波长为1480nm和1500nm。报道的数据表明,该光纤激光器在 3.2W的泵浦下,可以获得大于400mW的输出。另外通过调整光栅1480B的反射率,可以对输出波长的功率进行控制和调整,该特性使得该类光 纤器可较好地用到增益平坦的拉曼放大中。


五、新型的光纤激光器技术



  早期对光纤激光器的研制主要集中在研究短脉冲的输出和可调谐波长范围的扩展方面。今天,密集波分复用(DWDM)和光时分复用技术的飞速发展及日益进步加 速和刺激着多波长器技术、超连续器等的进步。同时,多波长光纤激光器和超连续光纤激光器的出现,则为低成本地实现Tb/s的DWDM或 OTDM传输提供理想的解决方案。就其实现的技术途径来看,采用EDFA放大的自发辐射、飞秒脉冲技术、超发光二极管等技术均见报道。



5.1 多波长光纤激光器



  文献[10]提出的一种基于半导体光放大器(SOA)的多波长光纤激光器如图7所 示。图中SOA1长度是500mm,在1522nm处提供的小信号增益为23dB,SOA2的长度是250mm,在1530nm处可提供10.5dB的小 信号增益,两只SOA均为InGaAsP/InP屋脊波导型。F-P腔的自由谱线范围(FSR)为47.75GHz,精细度为8.1,损耗为 12dB。偏振控制器PC1和PC2分别用于补偿SOA1和SOA2对TE轴、TM轴的偏振相关增益误差。该结构在1554nm—1574nm范围内,实 现了波长间隔为50GHz、50通道的多波长DWDM光源,在50通道之间最大光功率差异小于1.6dB,消光比大于15dB,器的线宽小于 5GHz。



  为获得平坦的功率输出谱,文献[11]提出了一种改正型的方案如图8所示。图中FRM为法拉第旋转镜,VOA为可调光衰减器。由于光反馈臂的引入,一 个直观的特性是可对其输出的进行反馈监视,另外该改正型结构还可对的输出光性能提供较大程度的改善。据报道该结构在1554.7— 1574.7nm的波长范围内,实现了通道间隔为50GHz、52通道的多波长DWDM光源,且通道之间的最大光功率差异小于0.3dB,消光比达到 32dB,器输出的线宽为500MHz。


  经典 的Sagnac干涉装置在信息科学领域的超快速响应技术中有多种应用,其中包括:超快速光调制器的全光开关、全光解复用、信号再生、逻辑运算、信号格式变 换以及全光波长变换等。最近,OFC’2002的一篇文献将Sagnac干涉装置拓宽到器的应用[12]。该文献报道的基于NOLM的多波长拉曼光源,在四阶斯托克斯波内,可以实现20个波长通道输出。在OFC’2002的另一篇论文中,报道了一种采用偏振复用拉曼泵源、F-P可调滤波器和色散补 偿组成的去偏振多波长环行腔体拉曼光纤激光器。在由1428.2、1445.8、1463.4nm泵浦波长的拉曼泵源作用下,3dB带宽范围内的输出 波长可达到58个,通道间隔为50GHz。


  目前相关的会议报道已指出用AWG目前最多可输出400个信道,每个信道间隔25GHz(波长间隔0.4nm),输出波长能覆盖整个C波段和L波段。 然而这些信道的波长间隔都是固定的,是无法改变的。目前研制的器输出的多波长信号,其信道间隔也是一定的。OFC2001会议上报道了一个可调谐波长 间隔的多波长输出的光纤激光器。其原理图见图9。法拉弟旋转镜(FRM)用于补偿FRM与偏振分束器(PBS)之间的PMD,并且能稳定前后传输方向的正 交偏振态。利用在保偏中偏振模的耦合作为可调波长间隔滤波器。光纤激光器腔内的偏振分束器和偏振保持及其相关器件组成波长滤波器。当不对PMF施 加压力时,沿偏振快轴的光分量能通过滤波器,传输与波长无关;当对PMF施加压力时,在施加压力处,偏振模产生耦合,波长间隔就由施加压力的位置不同而不 同。施加压力的方式是用夹子夹住PMF的不同位置。例如在PMF的4m处施加压力,则可得到9个信道输出,波长调谐范围为1548.2nm- 1559.9nm,波长间隔为1.46nm。峰值功率漂移在6dB内。当施加压力的位置在8m处,光纤激光器输出14个信道波长,波长间隔为0.73nm。


  文献[15]提出了另一种可调谐的器方案如图10(a)所示,其主要的特色是波长间隔可调。图中具有不同波长峰值的n个光栅(FBG)采 用图10(b)结构被安装成FBG阵列,并级联起来以形成多波长激射。波长的调谐通过改变光栅的周期来实现。采用四个FBG制成的FBG阵列,在初始 工作波长在1547.64、1549.21、1551.36、1554.1nm的情况下,可调谐得到波长间隔不同的四个波长,分别为1547.64、 1551.64、1556.60、1561.24nm。



5.2 基于的超连续光纤激光器



   具有超连续谱的超短光脉冲在TDM/WDM系统中有着重要的意义。超短光脉冲不但能提高TMD系统中的单信道码率,同时其宽大的连续谱也能为WDM系统 提供众多的波长信道。大部分超连续谱的产生主要有以下两种方法:压缩超短光脉冲所得到的宽频谱和利用器件的非线性展宽脉冲的频谱。



  现在最流行的也报道得最多的是利用或光放大器的非线性产生超连续谱。其中利用产生宽连续谱最为经济实用。据报道,所采用的 类型不同,产生连续谱带宽也不同。比如在两头粗中间拉细的特种中(见图11)[16],产生的连续谱就很宽,可调谐波长范围为500nm-- 1600nm。泵浦源端的长为3cm,拉细长度为15cm,尾纤输出端为15cm。该连续谱在后段标准电信中输出Raman脉冲,可调谐波长 幅度达200nm,Raman脉冲波长调谐范围为1400nm--1600nm。脉冲频谱带宽为20nm,相当于脉宽130fs的边带极限脉冲。当改变输 入入射功率,则Raman孤子波长也发生改变。这种器就是以改变泵浦功率来改变波长。



5.3 锁模器



   连续调谐多波长锁模器一直是技术很活跃的研究领域。OFC’2001和OFC’2002中多篇论文报道了该类器技术[17][18]。 LI等报道了利用色散补偿(DCF)增加腔内色散,在主动锁模环形器中实现了3个波长的输出,并通过调节调制频率,实现了单波长和双波长 的连续调谐。现已研制成功线宽窄到2kHz的器、调谐范围达到75nm的宽调谐器以及重复频率达到21GHz的高重复频率器。



  平常常见的基于NOLM器只由NOLM环组成,没有图12的 3dB耦合器上的两个支路,主要是用来产生压缩后的超短脉冲,不具有锁模功能。图12所示的是改进的NOLM器,能进行亮暗脉冲转换,能选择 脉冲波长,产生高重复率的信号。调节PC1使B端输出最大功率时,在A端可得到亮脉冲;调节PC1使环内形成反射模时在A端就形成暗脉冲。在耦合器2支路 上可以通过滤波器选择输出波长,并通过EDFA对选定波长进行放大。当控制脉冲与主环频率失谐时,当产生控制脉冲的DFB器的驱动频率是主环的频 率f的n分之一时,可得到是控制脉冲n倍重复率的输出脉冲。例如主环频率f为19.4kHz时,控制脉冲调制频率为1145MHz,DFB器驱动频率 失谐在1/4f,则可得到4.58GHz重复率的输出脉冲。



5.4 频率上变换器



   P.Xie和T.R.Gosnell用钛宝石器的860nm泵浦几十厘米长的,通过更换不同的输出镜获得了红、橙、绿、蓝4种颜色的,功率 分别为300mW、44mW、20mW和3mW,斜效率分别为52%、11.5%、12.4%和3%。包层泵浦上转换器的研究工作是国际上的最新 研究热点,它在常规器研究工作的基础上,利用频率上转换技术大大扩展了器的频率范围,可获得近红外光、可见光乃至更短波长的输出。


六.光纤形式激光器的优点



    1.波导式结构



光纤激光器具有波导式的结构,可以在光纤纤芯中产生较高的功率密度。它所基于的硅光纤的工艺现在已经非常成熟,因此可以制作出高精度,低损耗的光纤。如果光纤的选择使泵浦和信号波长均运行于单模工作状态,则泵浦和信号光场之间的重合性非常好。由于光纤的几何特点,使得这种结构具有较高的面积一体积比,因而其散热效果很好。



以上这些特点就决定了硅为基质的光纤激光器可以在较低的功率泵浦下工作在连续的输出状态,而其它块状玻璃介质的激光器一般仅能工作在脉冲状态,常需要相当高的泵浦能量以获得激光输出。



   光纤的圆柱形结构还具有下列两个优点,便于在光通倍和医学中应用。



(1).由于光纤激光器本质上是一种光纤结构,因此它可以以较高的锅台效率与目前的光纤传输系统连接。



(2).由于光纤结构小巧便于操作,在医学的某些应用中是理想的,例如深入到人的胃中。



   事实上,基于光纤结构的激光器使得某些器件成为可能。我们可以利用定向锅台器的优点得到光纤形式的分束器。这一点对避免光纤系统连接时的衍射损耗非常有利。这样就可以不离开光纤形式完成光波的分束,利用这一特点就可以形成全光纤反射器,干涉仪和谐振腔。这种光纤激光器的设计使得低闭值操作,波长调谐和窄谱线输出都成为可能。



   掺稀土元素离子激光器的一个重要性质在于其输出光谱特性受到掺杂离子周围分子环境的显著影响。这种性质引起两个可利用的特性。其一是可以通过改变基质玻璃的组份来调节指出波长。其二是当基质是玻璃时,可以观察到较宽的荧光。通过对图1—1所示的腔结构进行改进,例如加上一个波长选择反射器,就可以得到50nm或更宽范围内的可调谐激光输出。



光纤激光器可以提供许多输出波长,其中某些波长对于光通信是非常重要的。输出光波长由掺杂到纤芯中的稀土元素离子所决定。在光谱段上1.33f4m和1.55flm波长的输出是最重要的,因为它们对应于光通信的两个低损耗窗口。1.55捍m的输出操作可以利用半导体器件作为泵浦源,因此意味着用较低的成本即可实现有价值的激光输出。目前,利用光纤激光器得到了2—3捍m范围内的激光谱线输出,这个波段的输出在更低损耗的中红外通信中有着潜在的应用价值。



七.光纤激光器的现状及发展趋势



国内现状



  我国商用光纤激光器目前全部依赖进口,原因是我们还没有实现光纤激光器的商品化和产业化。



  我国光纤激光器的研制其实并不落后,已经有好几个单位实现了连续200W以上的输出功率,但我国光纤激光器的产业化工作明显滞后。下面分析一下我国光纤激光器产业化发展滞后的原因。



  前文已经提到,发展全光纤激光器需要5大关键技术,不难看出,这5大关键技术除半导体泵浦激光器外,其他4大关键技术全部与光纤技术密切相关,准确的说,是与能量光纤技术密切相关。能量光纤技术是以信号光纤技术为基础发展起来的,而信号光纤技术主要是为光纤通信服务的,因此,能量激光和光通信这两个技术领域通过光纤这种特殊的媒质联系起来,使从事光纤和光纤器件研制和生产的单位能够深入地介入这两个技术领域并成为其核心力量。在光通信走入低谷的时候,适逢光纤激光器取得历史性突破之时,国外许多从事光通信光纤器件研制生产的单位开始转向能量光纤器件的研制和开发,以寻求新的发展机遇、拓展生存空间。这些投入能量光纤激光器开发的单位目前已经成为光纤激光器发展的重要力量,为发展新型全光纤激光器作出了巨大贡献。



   我国进行光纤器件生产和开发的单位虽然非常多,但总体技术水平较弱,在光通信走入低谷的时候,相关单位基本上只能选择在本行业苦苦支撑或关闭生产线两种方式,无力投入巨大资源进行能量光纤器件的研制和开发,所以,当全光纤激光器飞速发展对能量光纤器件提出迫切需求的时候,我国在这方面基本上还是一片空白。对于我国最早从事光纤激光器研制的单位来说,面对国内的这种局面,发展全光纤激光器基本上没有基础可言,因此,透镜整形聚焦端面泵浦外腔结构的方案成为现实选择。这种结构很接近传统的全固态激光器,对光纤技术的依赖程度很低,采用非光纤技术即可制作。但是,实践证明,光纤激光器只有采用全光纤结构才能充分体现整体的一致性、完整性、和谐性和匹配性,采用充分展现光纤激光器的优势,因此,全光纤结构方案更加符合光纤激光器发展的本质规律,所以,在世界范围内,全光纤激光器成为主流方案有其必然性。



  全光纤激光器需要能量激光器技术与光纤技术有机结合起来,从某种程度上来说,光纤技术在光纤激光器的发展中所占的比重很大,因此,能量激光技术和能量光纤技术是光纤激光器发展不可或缺的两条腿。目前,我国从事光纤器件研制和生产的单位仍然主要集中在光纤通信的产业链条之中,涉足能量激光技术的很少,这是我国光纤激光器发展面临的巨大问题。本文希望我国从事光纤器件研制和生产的单位突破行业界限,关注光纤激光器的发展,积极参与新型能量光纤器件的研制开发,为我国光纤激光器国产化和产业化作出贡献。应该看到,新型大功率全光纤激光器具有广阔的市场,发展能量型光纤器件,对于光纤器件研制生产单位是大有作为的。还应该看到,国外光纤激光器取得突飞猛进的发展也是最近几年的事情,尽管我国目前与国外的水平差距很大,但是落后的时间并不长,只要我国光纤器件的研制生产单位积极开展相关产品的研制开发工作,我们是能够在光纤激光器的研制生产方面站在国际前列的



2002年南开大学报道了在掺Yb3 + 双包层光纤器中得到了脉宽4. 8ns 的自调Q 脉冲输出和混合调Q 双包层光纤激光中得到峰值功率大于8kW ,脉宽小于2ns 的脉冲输出。



  2003年南开大学报道了利用脉冲泵浦获得100kW 峰值功率的调Q 脉冲,以及得到的60nm 可调谐的调Q 脉冲。



  2003年11月20日报道,上海科学家在激光领域取得新成果,成功开发出输出功率高达107W的光纤激光器。此激光器的全称为“高功率掺镱双包层光纤激光器”,与目前已有的激光器相比它的维护费用和功率消耗都要低得多,寿命是普通激光器的几十倍。该课题组的负责人之一楼祺洪研究员告诉记者,激光打印有着广泛的应用前景,与市民生活直接相关的如食品的生产日期、防伪标志等,若以激光打印代替现在的油墨打印清晰度高、永不褪色、难以仿冒、利于环保,具有国际流行的新趋势。上海科学家研制的光纤激光器使光纤激光输出功率又上升了一个新台阶,最大输出功率达107W,已经遥遥领先于全国同行。



  2004年,南开大学又报道了连续泵浦206kW峰值功率的调Q 脉冲。



  2004年12月3日,烽火通信报道,继推出激光输出功率达100W以上的双包层掺镱光纤后,经过艰苦的攻关再创佳绩,将该类新型光纤的输出功率成功提高至440W,达到国际领先水平。



这是烽火通信在特种光纤领域迈出的重要一步,同时也是我国在高功率激光器用光纤领域的重大突破。掺镱双包层光纤激光器是国际上新近发展的一种新型高功率激光器件,由于其具有光束质量好、效率高、易于散热和易于实现高功率等特点,近年来发展迅速,并已成为高精度激光加工(laser oem)、激光雷达系统、光通信及目标指示等领域中相干光源的重要候选者。双包层掺镱激光器的主要激光增益介质是双包层掺镱光纤,因此双包层掺镱光纤的性能直接决定了该类激光器的转换效率和输出功率。烽火通信作为国内唯一一家进行双包层掺镱光纤研究的单位,在成功推出输出功率达100W以上的完全可商用的双包层掺镱光纤产品后,又加大的研发力度,使得其输出功率实现440W以上,达到国际领先水平。



国外发展及现状



光纤激光器并不是什么新的器件,尽管到目前才引起广泛研究和重视。可以毫不夸张地说光纤激光器的历史和激光器本身的历史几乎一样长。第一个光纤激光器的荣誉应归于Sn5t2er和Koester,他们在l 963年和1964年分别发表了多组份玻璃光纤中的光放大结果Lt.23,当时他们正为美国光学公司(Amer5can 0pticaI勘rpoNt50n)工作。不久以后,光纤激光器被用于光学信息处理方面的工作c31。在光纤放大器方面的早期工作还有前苏联的Letokhov和PavliLL4J。令人感兴趣的一篇非常重要的文章是屑于高银和Hockham的c53,他们在1966年首先讨论了利用光纤作为通信介质的可能性。在光纤激光器发展的最初阶段就考虑了用半导体光源进行泵浦的可能性r61。在70年代,Bell实验室(现在的AT8LT)的一个小组也开展了这方面的研究工作。



在1975—1985这十年中有关这个领域的文章较少,不过在这十年中许多发展光纤激光器所必须的工艺技术趋于成熟。低损耗的硅单模光纤和半导体激光器都已商品化并得到了广泛的应用,而且还进行了氟化镑光纤的制作和完善了基于硅光纤的定向耦合器的制作。这些都为光纤激光器的研制铺平了道路。半导体激光器,尤其是高功率输出的半导体激光器作为泵浦源在光纤激光器中极为重要。而熔硅型定向锅台器则对全光纤的激光器的设计起着举足轻重的作用。



    在80年代中后期的几年中,英国南安普敦大学的电子工程系和物理系也卷入了这个领域的研究?8Ih,他们在其中扮演了非常重要的角色,是他们演示了用MCVD方法制作的单模光纤所构成的激光器的运行,从而再度唤起人们对这个研究领域的兴趣。此后该校的这两个研究小组先后报导了光纤激光器的调Q,锁模,单纵模输出以及光纤放大器方面的研究工作。英国通信研究实验室(BTRL)于1987年首次报导了其研究结果LJlotlll。BTRL的研究人员展示了用各种定向锅合器制作的精巧的光纤激光器装置,他们在增益和激发态吸收等研究领域中也作了大量的基础工作,在用氟化桔光纤激光器获得各种波长的激光输出谱线方面做了开拓性的工作,最重要的是制成了利用半导体激光器作为泵浦源的光纤激光器和放大器。其它在这个领域内发表过研究成果的研究机构还有德国汉堡的技术大学E1zi,NTTL““,HoyaLIdi,日本的三菱L151,美国的P01aroid Co叩oration(’氏,斯坦福大学[”和GTEL’:;等。当然世界上还有许多研究机构活跃于这个研究领域。



八.结语



 随着光通信网络及相关领域技术的飞速发展,器技术正在不断向广度和深度方面推进;技术的进 步,特别是以光栅、滤波器、技术等为基础的新型器件等的陆续面市,将为器的设计提供新的对策和思路。包层泵浦器和单波长、 2lRFL和3lRFL的面市,无疑体现出器的巨大潜力。尽管目前多数类型的器仍处于实验室研制阶段,但已经在实验室中充分显示其优越 性。目前器的开发研制正向多功能化、实用化方向发展。其中比较突出的器类型有:能根据客户需要波长而输出特定波长的Raman 器,针对WDM系统而开发的基于超连续谱的多波长器,能改变波长间隔的多波长器。可以预见,器将成为LD的有力竞争对手,必将在 未来光通信、军事、工业加工、医疗、光信息处理、全色显示和印刷等领域中发挥重要作用。



 

 

转载请注明出处。

暂无关键词
免责声明

① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0相关评论
精彩导读