阅读 | 订阅
阅读 | 订阅
解决方案

新型激光技术分割脆性材料

星之球科技 来源:荣格2017-11-22 我要评论(0 )   

成本、质量、产量是半导体和光伏制造业赢得成功的关键因素。其中,一个重要的加工方式是切割,因为需要采用不同的切割工艺将晶圆

 成本、质量、产量是半导体和光伏制造业赢得成功的关键因素。其中,一个重要的加工方式是切割,因为需要采用不同的切割工艺将晶圆(wafer)分离成裸片(die)或将太阳能电池切割成为半电池。然而,传统的机械式或基于激光工艺的切割技术或多或少存在诸如因去除材料而导致的颗粒形成或在切割边缘造成材料损伤等弊端。
 
热激光束分离技术
 
在这种情况下,热激光束分离技术(TLS-Dicing)成为分离硅(Si)、碳化硅(SiC)、锗(Ge)和砷化镓(GaAs)等半导体材料的一种快速、清洁、高成本效益的替代解决方案。
 
根据应用的不同,先从初步的划片工艺开始,然后,按照经过仔细计算过的能量对材料进行激光加热(图1a)。材料受热膨胀,受热区内压力上升,同时受热区周边的拉伸应力也随之增加。激光加热后紧接着的是喷射极少量的去离子水进行冷却(低于10ml/min)(图1b)。这将在第一区域附近形成第二个冷却区,从而引起切向拉伸应力模式。在两种应力模式的叠加区域产生的拉伸应力将导致材料发生开裂,并引导裂纹尖端贯穿材料。(图1C)。
 
 
QQ浏览器截屏未命名
 
图1:热激光束分离技术的原理包含激光加热(a)、水喷雾冷却(b)、以及应力引起的开裂(c) 等要素。
 
与传统切割技术相比,热激光束分离技术彰显出诸多优势,例如分离速度快、侧壁非常光滑、无碎裂和微裂纹、优异的抗弯强度、以及无刀具磨损和物料消耗所实现的低拥有成本。
 
该工艺使用了两种激光源:用于初步划片的高斯光束短脉冲划片激光器(532nm 或近红外波长激光)和另一款切割激光器。切割激光器可实现200W 连续波激光以及近红外波长。
 
热激光束分离技术是一种无切口的切割工艺,工艺本身几乎不产生颗粒。与传统切割技术相比,TLS-Dicing 是能够一次性完成晶圆整个厚度切分的高效工艺。
 
碳化硅器件的切割
 
基于带间空隙大、机械强度高、热导率高等优点,碳化硅(SiC)在某些功率器件中得到了广泛的应用。这些器件可以在更高的电压、频率和温度下工作,也能够以更高的效率或更低的功率损耗转换电能。同时,由于SiC 是一种非常硬而脆的材料(莫氏硬度为9.2),其加工过程中也会面临诸多挑战。
 
传统的切割技术在加工速度和切割质量方面存在一些弊端。例如,机械锯切的进给速度慢、刀片磨损大,成本高。此外,锯切容易导致晶片边缘产生碎屑以及造成脱层。相比之下,激光烧蚀会产生显著的热影响区、导致边缘质量不佳,以及形成微细裂纹。同时,激光烧蚀率很低,需要通过多次烧蚀才能完成单个晶圆裸片的分离。
 
相较以上加工手段,热激光束分离技术则是一次性即可完成的工艺,它能够以300mm/s 的速度对完整厚度的SiC 晶圆进行分离。由于TLS-Dicing 是一种切割工艺,因此,有望降低晶圆的切割宽度,并且提高每个晶圆可切割的晶片数量;同时,晶片边缘可实现光滑的效果、无残余应力、微裂纹和碎裂区(图2)。此外,前端切割迹道上的金属结构、晶片上的聚酰亚胺和背面的金属均能够顺利分离,且不会产生脱层或热效应。
 
 
QQ浏览器截屏未命名
 
图2:经过热激光束分离的SiC晶片边缘光滑、无微细裂缝、无碎裂。
 
对背面全金属化、含聚酰亚胺、切割迹道带金属结构的典型功率器件晶片使用热激光束分离工艺的产能进行了分析,结果显示,平均产能大于98%。此外,TLS-Dicing 工艺显著改善了每片晶圆的加工成本。3D-Micromac 是激光微加工领域的主要供应商,该公司开发的高性能microDICE 激光划片系统采用了热激光分离技术,能够将晶片分离成模具,显著降低了各晶片的划片成本,在提高产能的同时,也提供了优质的封边质量,对碳化硅而言尤为如此。该系列设备已经为许多工业制造企业所使用。
 
硅太阳能电池的切割
 
随着半模电池组概念的引入,使得电池的分离呈现出工业关联性,这种方法可以获得显著的功率增益。光伏类电池的标准工业流程是建立在激光划片和随后的机械切割基础上的。这种工艺的缺点是降低了电池效率和机械强度,同时,因为采用了激光加工与随后的机械切断相结合的技术,使得加工成本变得高昂。
 
为了克服这些缺点,3D-Micromac 公司将热激光分离技术应用于其microCELL 工业激光系统中,microCELL 是将标准硅太阳能电池分离成半电池的高效激光系统。与传统的分离技术相比,TLSDicing工艺能获得清洁、无裂纹的边缘;并且,不会在分割的边缘上出现晶体受损现象(图3)。非烧蚀工艺确保实现良好的封边质量。与激光切割相反,由于基材仅仅受到加热而不是蒸发,所以不会出现膨胀及形成颗粒。经TLS 加工的半模电池的机械稳定性比常规处理的太阳能电池高出很多。
 
 
QQ浏览器截屏未命名
 
图3 所示为经激光切割的边缘出现了断裂(a)和经过TLS-Dicing 工艺加工的边缘质量(b)。
 
热激光分离技术可实现的进给速度最高为500mm/s,与传统蚀刻和切割方法相比,其加工速度增加了近5倍。激光飞行加工及创新型处理概念实现了全面制造晶体半电池的最大生产能力和产量,每小时可以将加工近10,000只半模电池。
 
当前的技术发展状况
 
除了用于光伏或半导体行业,3D-Micromac还可提供一种基于热激光束分离的玻璃切割技术。这种切割技术使用了CO2激光器。根据具体应用的不同,可采用加工后切断或激光全切的方法。
 
切割效果能够满足工业显示器的生产要求,并可以确保清洁、温和的加工流程。此外,可以实现没有微细裂缝的光学层面上的清洁切割边缘。
 
 
QQ浏览器截屏未命名
 
图4:使用TLS 工艺切割钠钙玻璃样品的切割边缘
 
主要的应用范围从显微镜载玻片延伸到平板显示器前盖。最常用于加工的玻璃是0.7mm-1.1mm 范围的钠钙玻璃,以及用于平板显示器的0.1mm-0.7mm 的无碱硼硅酸盐。
 
总体而言,热激光分离是一种全新的分割半导体和光伏行业用脆性半导体材料的高效手段,它具有产量高、成本低、分割质量高的优点,通常一次性就能完成分离。这种工艺的进给速度介于300mm/s和500mm/s之间,具体视不同应用而异。与传统的划片或切割技术相比,TLS-Dicing 具有侧壁质量优异,无碎裂,以及拥有成本低等多重优势。

转载请注明出处。

新型激光技术热激光分离
免责声明

① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0相关评论
精彩导读