简单地说,一台数控(CNC)激光切割机使用相干光束切割材料,材料通常为金属板材,但也包括木材、金刚石、玻璃、塑料和硅材料。
从广义上讲,激光切割可分为两种类型:激光熔化切割和激光烧蚀切割。激光熔化切割是先在一定范围内熔化材料,并使用高压气流将熔融材料排出,形成一个开放的切口。相比之下,激光烧蚀切割采用脉冲激光逐层去除材料,它像凿子一样,只在微观尺度内用激光进行加工,这种方法让材料蒸发,而不是熔化。
鉴于激光熔化切割在金属板材切割中的优势,我们将重点研究激光熔化切割技术。
光纤激光器 VS CO2激光器
两种最常见的激光切割机类型是:光纤激光切割机和CO2激光切割机。
CO2激光器通常使用电磁激励气体(通常为二氧化碳、氮气和氢气、氙气或氦气的混合物)作为活性激光介质。相反,光纤激光器(是一种固体激光器)则使用掺有稀土元素(如铒、镱、钕或镝)的光纤作为工作物质。
“大约从2010年或2011开始,光纤激光器的销售额大约占据了所有激光器销售额的5%-10%,”AMADA AMERICA公司激光部门产品经理Dustin Diehl说,“在次之前,光纤激光器的销售份额也基本接近这个比例,但它们并未获得太多关注,当时人们对这项技术并不熟悉。随着客户开始对光纤激光器给出了满意的使用反馈,这时候你才真正开始看到光纤激光器的销售额开始飙升了。到2017年,我们超过90%的切割机销售额来自光纤激光切割机。”
关于光纤激光器将要在市场上完全取代CO2激光器的猜测,可以追溯到一些最早的光纤激光器系统。在过去的十多年间,人们的问题已经发生转变:已经从“所谓的面向特定市场的激光切割机是否可能拥有比预期更大的市场?”转向了“光纤激光器能完全取代CO2激光器吗?”
即使在很多专家那里,这也是一个有争议的话题。
“光纤激光器替代CO2激光器的趋势将会继续,”Bystronic公司激光切割产品经理Erich Buholzer说,“潜在地,CO2激光器将会被完全取代。如果是这种情况,随着光纤激光技术的进一步发展,这种完全取代将发生在本世纪中期。目前,CO2激光器仍然具有一些独特的优势,例如在厚板材切割方面拥有更好的边缘质量和更小的毛刺。”
Diehl的观点则更加谨慎,但他仍对光纤激光器的前景持乐观态度:“光纤激光器会取代CO2激光器吗?我不想对此作出大胆的声明,因为可能有一些应用还是要用CO2激光器,当然我们能用光纤激光器来做的事越来越多,由此我们也发现,没有什么是光纤激光器不能做的,而CO2激光器能做的。”
CO2激光器和光纤激光器光束模式对比
图片来源AMADA
Diehl并不同意Buholzer对光纤激光器在厚材料加工方面的性能评价。
“CO2激光器在厚板材切割中拥有更好的‘切割边缘’,这可能是一个古老的误解,当然这里我们在光纤激光器世界中谈论的‘古老’,可能也就是几年前的事。”Diehl说,“当光纤激光器首次问世时,这确实是一个值得关注的问题,因为当时确实没有任何技术能让光纤激光器获得像CO2激光器那样的边缘切割质量。但是今天,我们已经可以用光纤激光器获得类似的边缘切割质量,即使是切割更厚的材料。”
IPG Photonics公司的Sarrafi对光纤激光器的前景更为乐观:“由于最近几年取得的所有发展,我预计固态激光器,特别是光纤激光器将会在金属板材切割应用中完全取代CO2激光器。如果你去逛一逛像FABTECH这样的展会,你就会发现,光纤激光器已经在金属切割领域占据了主导地位。”
激光切割的材料
正如前文提到的,CNC激光切割机已经在各行各业中用于广泛的材料切割。由于切割金属板材是最为常见的应用,因此值得关注其所涉及的特殊性。例如,反射率和表面厚度就是两个最重要的考虑因素。
“反射率是考虑一种材料是否能被切割的主要因素,并且所使用的激光技术(例如CO2激光器与光纤激光器)也会有很大的影响,”Buholzer说,“最大切割厚度取决于各种因素,包括激光功率及其应用方式。”
关于反射的问题,Sarrafi补充说:“现代光纤激光器如果具备足够高的功率和足够小的光斑尺寸,那么它们已被证明能够切割所有的反射性材料。”他说,“这是一个关于高峰值功率和光学设置的问题。因此,反射率已经不再是什么大问题了。”
的确,光纤激光器的发展已经让激光能切割的金属材料有了更多选择,包括铜、黄铜钛和其他CO2激光器不适合切割的合金材料。然而,尽管取得了这些进展,但材料厚度仍然对激光切割提出了重大限制。
Diehl说:“一般来说,在激光的世界中,切割厚度为1英寸的低碳钢已经是上限。若要切割厚度为1.5英寸或2英寸的板材,可能会有比激光更好的工具来完成这项工作了。”
激光切割中的常见错误
与任何新工艺一样,激光切割也有一条学习曲线。如果你具备使用其他XY轴切割工艺的经验,例如等离子切割,那么一台CNC激光切割机对你来说应该是比较熟悉的。然而,这里仍然有一些新用户应该注意避免的错误要提醒大家。
Sarrafi特别指出了两个常见的错误。
“我看到客户有时会忽略工具分辨率或切口宽度,错误地假设激光切割能实现无限窄的切割线。”Sarrafi指出,“然而事实情况并非如此,尽管激光切割能实现的切口比其他工艺更窄。典型的切口宽度范围通常为30~300μm,这取决于激光功率、光学设置和切割过程。切口宽度是需要在设计中考虑到的一点。”
另一个常见的错误是使用微型接头来支撑小零件,这被称为"tabbing"。
“激光切割使用高压气体(氮气切割为5~25巴),因此,需要切割的零件要么由自身的重量支撑,如果零件厚度超过2~3mm并且尺寸相对较大的话,这种方法没问题;但是对于薄而小的零件,为了抵抗气流的压力,需要对它们进行固定。”Sarrafi说,“这些微接头非常小,宽度在0.2~0.4mm,所以它们很容易在后处理中断裂,但有时必须要用它们将零件连接到框架上,以保证零件不会被吹走。”
图片来源Bystronic
高效激光切割的要领
关于激光切割有一个普遍的误解,就是效率只是激光功率的问题。这种误解部分源于CO2系统的遗留问题,但是光纤激光技术的快速发展,使得切割效率不仅仅与激光功率有关。“虽然原始切割功率正在增加,但仍需要考虑其他因素。”Buholzer说,“从技术上来讲,特别是对于薄材料切割而言,为了充分利用额外的切割功率,也需要增加机械动力学方面的灵活性(加速/减速)。”加速和减速是限制切割效率的一个主要因素。
即使将切割速度翻倍,也不一定就能实现加工周期的等效缩短,因为加工周期主要取决于被切割零件的几何形状,正如Sarrafi解释的:“尽管能够实现非常高的切割速度,比如每分钟2000英寸或每秒1英寸,但是对于具有复杂特征的小于2英寸或更小零件的切割周期,其主要限制因素是加速度而不是速度。因为在开启全速切割之前,必须要将切割头移动到另一个地方。”
从另一个方面来看,对于大型零件或是形状不复杂的零件,则能充分享受激光切割的高速优势,因为在这种情况下,加速和减速并不是效率的主要限制因素。“你真正需要的是一个很好的光束传输系统来处理需要传输的功率,包括镜头和切割头等。”Diehl指出。
“激光切割不仅仅是原始功率的问题。”他补充道。
转载请注明出处。