1.残余应力是激光增材再制造面临最为棘手的问题之一
再制造零件增材部分通过激光熔覆技术逐点扫描堆积成形,这一非线性强耦合过程中,材料的温度、物性不均匀性极强,不可避免的伴随应力、应变的演化,导致再制造零件出现裂纹、变形,而且高的残余应力状态也将影响零件的静力学、耐蚀、疲劳等性能,最终影响再制造零件的服役性能及安全。
同激光3D打印技术相比,激光增材再制造残余应力问题更为突出。对于激光3D打印,可以通过合理的堆积策略,调整熔覆过程温度场的均匀性,调整材料实际拘束度,避免拉应力过大积累;激光增材制造过程基体形状尺寸往往是固定的,其拘束度一般较大,容易造成高水平残余拉应力的积累。另外,激光增材再制造过程中,基体材料同再制造材料往往是异种材料,其屈服强度、热膨胀系数等影响残余应力演化的关键参数通常相差较大,容易造成高水平残余拉应力水平积累,且提高应力分布的不均匀性。北航王华明教授把残余应力问题称为激光增材制造的“第一大瓶颈难题”,对于激光增材制造,这个问题的严重性有过之而无不及,需要做进一步的工作。
2.热影响区性能劣化是激光增材再制造的另一个重要问题
众所周知,热影响区通常是焊接接头比较脆弱的部分,激光增材再制造过程虽然热源能量密度集中,热影响区域较小,但其热影响区材料性能演变仍然是一个需要重点关注的问题。激光增材再制造热循环引起材料微观组织变化,最终影响材料的性能,热过程可能影响晶粒的尺寸及均匀性,影响析出相的种类、分布及尺寸,材料的固溶度、元素晶界偏析程度等,最终影响热影响区的硬度、强度、塑性、耐蚀性等性能。从基体到界面,典型的热影响区可以粗略分为不完全再结晶区、再结晶区、过热区等。不完全再结晶区晶粒度均匀性较差,性能均匀性也较差;再结晶区组织通常较细;过热区有许多异常长大的晶粒,其晶粒度及性能均匀性也较差。激光增材再制造常见的基体材料有镍基、钴基、钛基、铁基、铝基等,并且其热处理状态多样,有铸态、锻造、时效、轧制、渗碳渗氮等,因此,激光增材制造热影响区性能的劣化方式及劣化程度有较大的区别,需要根据具体材料,进行有针对性的探索研究,通常情况下,焊接过程热影响区的研究结果具有一定的参考价值,但需要注意激光增材再制造热循环跟一般焊接过程热循环的区别,激光增材再制造过程中,热影响区温度梯度更大、温度变化也更加剧烈,热循环的次数可能会更多。
3.基体同再制造材料的界面匹配性问题也是激光增材再制造的一个重要问题
和激光3D打印不同,激光增材再制造材料与基体材料化学成分及热处理状态往往不同,其组织特征、物理化学性能必然存在一定的差异,这些差异将影响界面的结合质量,导致缺陷出现。界面的问题主要有以下几类:一种是界面脆性相,基体材料同熔覆材料混合,有可能生成一些脆性相。如,灰铸铁件激光增材再制造的时候,由于石墨中碳的释放,在极高的冷却速率下,极易在界面处出现淬硬组织“白口”,脆性相的生成往往导致再制造过程出现裂纹,严重劣化界面性能。另一种界面问题是界面缝隙及裂纹,基体材料同熔覆材料如果相容性差,则界面湿润性能差,很容易在界面出现缝隙气孔等缺陷,影响界面结合强度。界面物性匹配度也是界面的重要问题,激光增材再制造过程中,界面两侧材料需要经历复杂的温度及应力应变循环,这种物性的差异容易导致界面应力异常,甚至出现裂纹,在后续服役过程中,零件常常需要承受温度载荷及力载荷,此时,热膨胀系数、屈服强度、硬度、密度等差异将严重影响界面性能,甚至出现剥落等现象,影响服役性能及服役安全。事实上,激光增材再制造材料是该技术的核心,有必要根据基体材料体系、热处理状态、服役条件等因素,建立激光增材再制造材料专用数据库,实现数据共享,推动激光增材再制造产业发展。
4.再制造过程的智能化及自动化也是激光增材制造技术的重要问题
对于激光3D打印,相对比较容易实现自动化,同种零件可以采用完全一样的制造策略。激光增材再制造技术中,再制造毛坯种类千差万别,即便同一类零件,其损伤方式、损伤位置、损伤程度也不尽相同,这意味着激光增材再制造很难像制造过程哪样,简单的实现批量化、自动化生产。这一特点将影响激光增材再制造的周期和效率,降低其经济性。理想状况下,先对待再制造零件进行三维扫描,反求后待再制造模型同理想零件模型进行对比,然后自动进行再制造策略的制定,确定零件上坐标参考点后,进行激光增材制造操作,经过后续处理,即可得到再制造完成零件。目前的实际操作中,三维反求后的堆积策略制定,尚不能达到最理想的状态,没有完全实现自动化及智能化,再制造效果不尽如人意,常常需要人工针对具体零件进行再制造操作,这要求操作人员具有较高的技术水平、增加了再制造操作的时间周期,降低了经济效益。因此,有必要继续深入研究三维反求后再制造策略规划技术,需要注意的是,激光增材再制造技术有基体的限制,其策略规划同激光3D打印技术有一定的区别。
转载请注明出处。