阅读 | 订阅
阅读 | 订阅
深度解读

上海硅酸盐所在激光单晶光纤研制与应用研究方面取得进展

星之球科技 来源:上海硅酸盐研究所2020-03-10 我要评论(0 )   

激光单晶光纤是介于传统固体激光器所用的块体晶体与光纤激光器所用的玻璃光纤之间的新型增益介质,是将晶体材料制备成为纤维状的

激光单晶光纤是介于传统固体激光器所用的块体晶体与光纤激光器所用的玻璃光纤之间的新型增益介质,是将晶体材料制备成为纤维状的单晶体,直径在几十微米到2毫米之间。它继承了单晶材料的理化性质、光学性能和光纤材料的形态特征,具有热导率高、散热效率高、非线性增益系数小等优势,这使得以单晶光纤为工作介质的激光器件可以兼具固体激光器的高峰值功率与光纤激光器的高平均功率。

近期,中国科学院上海硅酸盐研究所研究员苏良碧、武安华带领的科研团队,通过与国内外同行的通力协作,研制了新型激光加热基座(LHPG)单晶光纤生长炉,并成功制备出直径0.2 mm、长度710 mm Yb:YAG单晶光纤。该单晶光纤长径比>3000,直径波动在±5%以内,在目前已知国内同类单晶光纤中具有最高的长径比,且表现出可弯折的柔韧特性,有利于实现全固态、高紧凑型高功率激光器件的制备。

材料高通量制备技术可有效加速材料研发-应用进程,被列为“材料基因组计划”的三大技术要素之一。该团队通过改进多坩埚下降法技术,设计特殊的甚多微孔石墨坩埚,实现了稀土掺杂CaF2SrF2等氟化物单晶光纤的高通量制备,单炉次制备的单晶光纤数量达到102量级,并可在同一炉次制备不同掺杂浓度、不同直径的单晶光纤,单晶光纤的直径范围为0.9~1.9 mm,最大长度达到60mm。该“甚多微孔坩埚法”制备技术一方面可以在几乎相同的实验条件下一次性开展多组分、不同形态单晶光纤的高通量制备,提高实验结果的可靠性、重复性与效率,另一方面也为这一具有潜在应用前景的中红外单晶光纤的大批量制备提供了技术基础。通过与山东师范大学教授刘杰团队合作,研究人员采用掺杂浓度3.0 at% ~ 4.0 at%Er3+:SrF2Tm3+:CaF2单晶光纤,分别在中红外2.8 μm1.9 μm波段实现了激光效率最高为34.9%64.4%的连续激光输出。

相关研究工作以简报的形式发表在《人工晶体学报》(人工晶体学报2020, 49: 175),和国际学术期刊《光学材料》、《光学快讯》(Optical Materials, 2019, 95: 109255; Optics Express, 2020, 28: 6684-6695)上。

以上系列研究工作得到国家自然科学基金重点项目(61635012)和中科院战略性先导专项(XDB16030000)、装备研制项目(YJKYYQ20170019)、重点国际合作项目(121631KYSB20180045)的资助。

自主研制的激光加热基座(LHPG)单晶光纤生长炉

Φ 0.2 mm × 710 mm Yb:YAG单晶光纤晶体

采用“甚多微孔坩埚法”同一炉次高通量制备的Ф 0.9 mmФ 1.9 mm Tm3+:SrF2单晶光纤(a)Ф 1.9 mm Er3+:SrF2单晶光纤(b)以及Ф 1.9 mm Tm3+:CaF2单晶光纤(c)

Er3+:SrF2单晶光纤的2.8 μm CW激光输出功率(a)Tm3+:CaF2单晶光纤的1.9 μm CW激光输出功率(b)

转载请注明出处。

激光晶体激光技术
免责声明

① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0相关评论
精彩导读