阅读 | 订阅
阅读 | 订阅
激光电源

利用单片机实现对激光器电流的精度控制(二)

星之球激光 来源:电子工程世界2011-11-17 我要评论(0 )   

DRV592 是TI ( Texas Instruments) 公司出品的高效、大功率H 桥电源驱动集成块,输出电压范围从2. 8 V 到5. 5 V ,最大输出电流为3A。DRV592 需要外部PWM触发(兼容TTL 逻...

DRV592 是TI ( Texas Instruments) 公司出品的高效、大功率H 桥电源驱动集成块,输出电压范围从2. 8 V 到5. 5 V ,最大输出电流为3A。DRV592 需要外部PWM触发(兼容TTL 逻辑电平) ,内置过流、欠压和过热(130 ℃) 保护和电平指示。业界最小封装( 9mm ×9 mm 32 脚PowerPADTM扁平封装模式) ,具有- 40 ℃到85 ℃工业用温度范围标准。值得一提的是该芯片集成了4 个大功率MOSFET 和过载保护电路,与采用分立元件设计(见图3) 相比,简化80 %的设计。并且只需添加几个外部元件就能容易地构成精确的温度控制环路用以稳定激光二极管系统。基于DRV592 的半导体TEC 的电源驱动电路见图4。和图3 相比,可以看到基于DRV592 的TEC 电源驱动电路设计大大简化,并且DRV592 还有内置过流、欠压和过热(130°C) 保护电平指示。引脚功能见表1。

 
  由于大电流开关电路会产生很大的噪声干扰,为减少干扰,可适当增大开关管的转换时间来降低高频开关噪声。虽然这会使开关效率降低一些,不过用这个代价换来噪声的大幅度改善还是值得的。
  另外由于TEC 具有热惯性,改变状态会有一定的延迟,会给系统引起振荡。为了消除振荡,可在放大器两端并联积分电路,增加延时,消除振荡产生。要注意的是稳定的温度是由热敏电阻的反馈来决定的,因此要将TEC 与热敏电阻封装在一个模块中,使它们紧密耦合。
  温度探测器的精度直接影响温度控制的效果。
  温度探测电路部分与恒流源类似,采用NTC(负温度系数) 的热敏电阻作为温度探测器。其中用陶瓷粉工艺制作的NTC 元件对温度的微小变化有最大的电阻变化。特别是某些陶瓷NTC 在其寿命内(经适当老化) 具有0. 05 ℃稳定度。并且与其它温度传感相比,陶瓷NTC 的尺寸特别小。然后将热敏电阻串联入一恒流源,对热敏电阻两端电压采样,将温度变换为电信号。原理如图5 所示。

 

温度探测电路中采用的是TI 公司出品的CMOS单电源,低功耗双运算放大器TLC2252 。TLC225x系列具有高输入阻抗、微功耗、低噪音等优点,适用于手持移动设备。在1kHz 的噪音仅为19nV ,是同类产品的1/ 4。
  1. 3  主控制及显示部分
  该控制器是以AT89C51 单片机为核心构成的,它直接控制激光器的驱动电流、温度,并且能够将系统当前温度、电流大小,预设电流和预设温度直观准确的反映出来,而且对仪器操作也更加方便,精确。
  整个单片机控制部分流程如图6 所示,程序流程图如图7 所示。


 

 

 

   恒流源的控制电压为0V~5V ,如输入端由8 位D/A 控制,分辨度为2. 5A ×1/ 2e8 = 0. 01A ,若采用12位D/ A ,则可精确到毫安级。热敏电阻阻值与温度呈非线性关系,大致为e 指数形式,因此在高温部分,对温度的分辨力会降低,所以A/ D 转换器应在12 位以上才能有较好的效果。并且在单片机的ROM中组织一张热敏电阻温度与电压关系表,通过查表的方法来实现对热敏电阻采样后进行温度换算和对H 桥温度控制。
  此外, 像D/ A ,A/ D 这些器件有些需要使用- 5V电压作参考。可以用555 芯片作方波脉冲发生器,滤掉其直流成分,在用二极管将正向电压短路,留下的负电压经平滑处理后得到- 5V 电压。
  2  总 结
  作者设计的激光控制器具有适应性强,输出电流范围大,温度控制精度高,操作简单直观等优点,是一种比较可行的激光控制器方案。
 

 

转载请注明出处。

暂无关键词
免责声明

① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0相关评论
精彩导读