阅读 | 订阅
阅读 | 订阅
激光电源

电源管理电路设计时必需考虑的散热问题(二)

星之球激光 来源:电子技术设计2011-12-31 我要评论(0 )   

电感器和温度 迄今为止对关于LM3554和高温的讨论也适用于LM3554的功率电感。与半导体器件(如LM3554)一样,功率电感器损耗过多热量将改变器件特性并导致电感和电源工作异...

电感器和温度

 

迄今为止对关于LM3554和高温的讨论也适用于LM3554的功率电感。与半导体器件(如LM3554)一样,功率电感器损耗过多热量将改变器件特性并导致电感和电源工作异常。功率电感温度过高,通常会导致直流绕线电阻增加和饱和电流限制降低。

 

电感器电阻

 

电感线圈的电阻温度系数导致电感直流电阻会随着温度变化。线圈通常为铜制,温度系数约为 3.9mΩ/℃,计算其电阻的等式如下:

 

 

公式

 

或相当于0.39%/℃变化。

 

让我们再看一下LM3554,评估套件中指定的电感器是Toko生产的FDSE0312-2R2。在 TA= 25℃时,测得的电阻为137mΩ。在 85℃时,电阻变化 为50℃×0.39%=19.5%(或变为164mΩ)。在RMS电感电流为2A且VIN=3.6V时,电感电阻变化会导致效率降低约1.5%。

 

电感器饱和度

 

或许在高温状况下,功率电感最为关注的问题是额定饱和电流下降。使用较大的RMS电流时,内部功耗导致电感温度上升,从而降低电感的饱和点。在饱和时,电感铁磁核心材料已达到磁通密度(B(t)),该密度不再随磁场强度(H(t))成正比增加。相反,当饱和时,由于电感电流增加而引起任何磁场强度增加,会导致非常小的磁通密度的增加。

 

如果在示波器上查看开关稳压器电感电流,我们会看到器件进入饱和状态时,电感电流斜率增加。这相当于电感下降。纹波电流的增加将导致 RMS 电流和电感器的开关损耗增加,这两项都会增加电感的功耗并降低效率。

 

电感器在特定点达到饱和时会产生突然的饱和响应,或者会与 FDSE0312-2R2 电感器一样产生逐渐的饱和响应。然而,电感器制造商通常会将饱和点指定为既定电流和温度下电感值的特定百分比跌幅。

 

图4描绘了工作在饱和状态下电感器的实例。该例子使用TDK生产的VLS4010-2R2(2.2μH)电感器,在进入饱和状态时出现急剧下降。当采用最小闪光脉冲宽度32ms,在升压模式下LM3554会显示出这种效应。较窄的脉冲宽度限制了电感器的自热,从而可以通过调节环境温度来控制电感器的温度。

 

 

电感器饱和与温度
图 4. 电感器饱和与温度。

 

图4左上图显示了在饱和点以下工作的电感器,具有正常的三角电流波形,可由(V/L×Δt)算出。在峰值电流保持相同且温度升至50℃(右上图)时,电感电流斜率开始增至1.76A标记附近,指示显示电感器的饱和点随着温度上升而向下移动。当温度升到70℃, 然后升到85℃时,随着电感器达到饱和整个电流波形最终出现。

 

估算电感温度(热阻抗)

 

各种因素都会促使电感器的温度上升。这些因素包括环境温度、电感器的热阻抗和电感器的内部功耗。利用电感器的直流电阻随温度变化这一特性,我们可以比较准确地估算电感器的工作温度。这类似于使用ESD二极管或PFET导通电阻,在此将电感线圈用作内部温度计。

 

返回到我们的电感器电阻与温度对比的等式中去,通过两个温度下电感器电阻的比率可以用下面的等式算出ΔT:

 

 

公式

 

图5中所示的测试示例在LM3554的电路中使用了VLS4010ST-2R2,直流电流阶跃为1.65A。室温时的电阻开始时为65mΩ。超过30秒之后,电感器达到稳态,电阻变为73mΩ,相应的稳态工作温度大约为 56℃。

 

 

电感器热响应
图 5. 电感器热响应。

 

使用热阻(RT)的定义,可以获得:

 

 

公式

 

这里要注意的一件事情是电感器的功耗是其线圈电阻的函数,后者会随着温度发生变化。因此,需要考虑计算电感器在给定RT的TF。将RT的等式插入电感电阻与温度等式并求解TF可以得出:

 

 

公式

 

其中k为。

 

 

公式

 

图5显示等效的电感温度上升与时间大约具有一阶指数关系。这再次得出等式:

 

 

公式

 

采用下面等式算出的热容:

 

 

公式

 

了解闪光LED驱动器示例中的电感热阻可以提供一些有益的见解。因为与闪光持续时间(小于1秒)相比,电感器达到稳定温度需要相当长的时间,所以采用稳态热阻估算的满闪光电流时的电感器工作温度,很可能会过高估算电感器的工作温度。这可以允许减少在脉冲器件(如闪光LED驱动器,而不是稳态电源)中工作的电感器的尺寸。

 

总结

 

当处理功耗相对较大的器件时,通常有必要估算电源管理电路的温度。使用通用热阻可以很好地比较采用相同封装的相似器件,但很可能得不到准确的温度预测。因此,通常有必要采用复杂的热计算或直接测量热阻的方法。本文重点介绍了几种可用于测量器件的温度并获得器件热阻的示例。知道准确的器件温度和器件功耗,从而进行热阻计算。

 

在知道热阻之后,利用器件功耗的逐步变化和监控器件温度可以计算器件热容。这样可以更准确地估算由于瞬态热事件导致的器件温度。本文中列出的示例是通过使用高电流白光LED#p#分页标题#e#闪光驱动器而完成的,但也同样适用于其他电源管理器件,包括以脉冲方式工作及专为长时间工作而设计的器件。

 

转载请注明出处。

暂无关键词
免责声明

① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0相关评论
精彩导读