准同步焊接
为了检验焊接的特性,我们设计了一个盒子形状的测试部件,这种部件在汽车行业中最为常见(见图3)。盒盖是由掺杂了30%玻璃的PBT(聚丁烯对苯二酸盐)制成的。我们使用压缩空气来涨破盒子来检验焊接的质量。
图3 激光焊接测试盒
在开环过程中,处理温度变化范围很小。使用固定的焊接速度,激光功率必须要保证±2%的稳定性,这样才能达到大约11.2帕的最大破坏气压。
在闭环过程中,处理温度能够从210℃变化到280℃,对焊接结果没有太大的影响。处理温度变化范围比在开环过程中大,并且破坏气压超过11.7帕。在高温计的测量范围中,焊接过程会受到激光透射部件的光学属性的限制。在近红外区的透射决定了所能实现的最大焊接速度。扫描振镜及纠正色差平场透镜的工作面积范围,限制了焊接部件的大小。
焊接
用高功率半导体激光器实施的激光焊接,除了在电子制造领域具备优势外,也能在薄膜太阳能电池焊接应用中大显身手。使用连续半导体激光器焊接,能获得几平方毫米大小的焊点(见图4)。激光焊接是一种非接触性焊接技术,而且能精确散热,热影响区非常小。这限制了焊接过程中太阳能电池产生的热应力。
通常硅太阳能电池互相连接成一条细线,然后层叠在模块里。这种技术要求使用额外的设备来处理又长、又易碎的细线。采用激光焊接,能通过直接焊接叠层,完全避免对细线的处理。这些模块的层叠顺序一般是玻璃、聚合乙烯乙烯醋酸酯 (EVA)、镀锡带、太阳能单元、镀锡带和透明 PVF 底层(聚乙烯化合物氟化物)。PV模块的前面和后面能够透射激光。焊接可以在层叠之前或之后进行。关于焊点的拉力和接触电阻,激光焊点的质量超过其他连接技术。激光焊点的拉力比其他方法高出3倍,而热阻只有其他方法的14%[1]。
不需要移动光学透镜及太阳能电池单元,扫描振镜可以焊接太阳能电池模块上的所有连接点。由于平场透镜有限的工作面积,必须要移动扫描振镜以处理模块的所有单元。
图5显示了闭环焊接过程中,温度和激光功率相对于时间的变化曲线。温度上升了150ms后,保持了200ms的稳定,以将热影响降至最小。
转载请注明出处。