4. 设置和配置总线的难易程度如何?
当您在选择总线接口时,请注意其设置和安装方式。某些仪器部署在有许多用户交互的地方,例如实验室中,这是就应该考虑选择SUB总线接口,使用起来非常方便,且与用户习惯一致。对于需要考虑安全性的仪器控制系统,您应该意识到信息技术部门可能会禁止使用以太网/LAN/LXI等总线。如果您确定以太网/LAN/LXI对于您的仪器控制系统来说是最佳总线接口,那么当您将其部署在一个需要考虑安全性的环境中时,应该在整个设计实施过程中与信息技术部门协同工作。
5. 常见总线的选择指南
表1. 常见的仪器硬件总线的简要介绍
6. 仪器控制硬件总线概述
GPIB
通用接口总线(GPIB)在独立仪器中是一种最常见的I/O接口。GPIB是8位并行数字通信接口,数据传输速率高达8 Mb/s。一个GPIB控制器总线可以最多连接14个仪器,并且其布线距离小于20米。但是,您可以通过使用GPIB扩展器和延长器克服这些限制。GPIB电缆和连接器种类丰富,并且是工业等级的,可以用于任何环境中。
GPIB不是一个#p#分页标题#e#PC工业总线,很少用于PC上。但是,您可以使用一个插件板,如PCI-GPIB,或者外部转换器,如NI GPIB-USB,将GPIB仪器控制功能添加到PC上。
串行总线
串行总线是主要用于老式台式机和笔记本电脑上的设备通信协议,请不要将其与USB混淆。在很多设备中,串行总线是最常见的仪器通信协议,而且很多与GPIB兼容的设备还具有EIA232端口。EIA232 和EIA485/EIA422也可以被称作RS232和RS485/RS422。
串行通信的概念很简单。串行端口每次发送和接收一个比特的信息。虽然它比每次传输整个字节的并行通信慢,但是串行总线更简单,而且使用距离更长。
通常情况下,工程师们使用串行接口来传输ASCII数据。他们使用三个传输线路来完成通信:地线、发送线和接收线。因为串行通信是异步的,端口可以在一条线路上传输数据,而在另一条线路上接收数据。其它线路可用于信号握手,但并不是必须的。串行通信的关键指标是波特率、数据位、停止位和奇偶校验位。两个串行端口若要进行通信,这些参数必须匹配。
USB
通用串行总线(USB)主要是用于与PC连接的外围设备,例如键盘、鼠标、扫描仪和磁盘驱动器等。在过去的几年中,支持USB连接的设备数量急剧增加。USB是一种即插即用技术,当添加一个新设备时,#p#分页标题#e#USB主机自动检测该设备,发出询问以识别该设备,并为其配置合适的设备驱动。
USB 2.0对于低速和全速设备是完全兼容的。其高速模式的数据传输速率能够高达480 Mbit/s (60 MB/s)。最新的USB3.0规范具有超高速模式,其理论数据传输速率可高达5.0Gbit/s。
虽然USB总线的设计初衷是针对PC外设,但是它的速度、广泛的适用性以易用性,令其在仪器控制应用中具有很大的吸引力。而USB总线在仪器控制中也存在一些不足:首先,USB线缆不是工业级标准的,可能在充满噪声的环境中导致数据丢失;另外,USB线缆没有锁紧装置,线缆可以很轻易地被拔出PC;而且,即便使用了中继器,USB线缆的最长传输距离只有30m。
以太网
以太网是一种成熟的技术,广泛应用于测量系统中,可以进行通用的网络连接以及远程数据存储。目前,全世界拥有超过一亿套配置以外网接口的计算机。而且,以太网还提供了用于仪器控制的功能选项。以太网是基于IEEE 802.3标准定义的,理论上可支持10Mbits/s(10 BASE-T)、100 Mbit/s (100BASE-T)和 1 Gbit/s (1000BASE-T)的数据传输速率。其中,最常见的就是100 Mbit/s (100BASE-T)以太网。
基于以太网的仪器控制应用充分利用了以太网总线的特点,包括远程仪器控制、简便的仪器共享方式、以及易于使用的数据结果的发布功能等。此外,用户还可充分利用公司或者实验室中现有的以太网络。然而,对于某些公司来说,以太网的这种特点还会带来一些麻烦:公司网络管理员可能需要介入到仪器应用的开发之中。 #p#分页标题#e#
基于以太网总线的仪器控制还有其它缺点,例如可能存在实际传输速率、传输确定性以及安全性方面的问题。虽然以太网总线可以实现高达1 Gbit/s的理论传输速率,但在实际使用中,由于网络同时也被其它应用占用,而且存在数据传输失效等问题,这种理论传输速率很少能够真正实现。此外,由于传输速率不稳定,以太网很难保证数据传输的确定性。最后,对于一些敏感的数据,用户需要采取额外的安全措施,确保数据完整与保密。
PCI
PCI总线通常不直接用于仪器控制,而是作为一种外设总线,通过连接GPIB或者串行通信总线来实现仪器控制。此外,由于其PCI总线带宽较高,常用于模块化仪器的背板总线,此时,其I/O总线内置于测量设备中。
PXI
PXI(面向仪器系统的PCI扩展)基于PCI平台,是一种用于测量和自动化系统的坚固总线。PXI结合了PCI的电气总线特性与CompactPCI的坚固性、模块化及Eurocard机械封装的特性,并添加了专门的同步总线和重要的软件特性。这些技术使得PXI总线成为测量和自动化系统的高性能、低成本部署平台,应用于诸如生产线测试、军工与航空航天、机器状态监控、汽车以及工业测试领域。PXI在1997年完成开发,并在1998年正式推出,它是为了满足日益增加的对复杂仪器系统的需求而推出的一种开放式工业标准。如今,PXI标准由PXI系统联盟(PXISA)所管理。该联盟由超过65家公司组成,共同推广PXI标准,确保#p#分页标题#e#PXI的互换性,并维护PXI规范。PXI在模块化仪器平台得到了广泛的使用,这种平台基于紧凑、高性能测量硬件,并集成了定时和同步资源,对于传统的独立仪器来说是理想的替代产品。
PCI Express
PCI Express与PCI相似,通常不会直接用于仪器控制,而是作为一种PC外设总线, 用于连接GPIB设备进行仪器控制。但是,由于PCI Express总线速度极高,可以用作模块化仪器的背板总线。
VXI
VXI(面向仪器系统的VME扩展)总线是针对多厂商工业仪器标准的首次尝试。VXI最初在1987年推出,接着被定义为IEEE 1155标准。VXI总线的缺点包括:缺乏软件标准,无法显著提升系统吞吐率;而且由于VXI不使用标准的商用PC技术,无法降低系统成本。
转载请注明出处。