转载请注明出处。
激光组件与材料
隔离器技术及市场分析
星之球激光 来源:光电新闻网2015-07-10 我要评论(0 )
光隔离器是一种只允许单向光通过的无源光器件,其工作原理是基于法拉第旋转的非互易性。通过光纤回波反射的光能够被光隔离器
光隔离器是一种只允许单向光通过的无源光器件,其工作原理是基于法拉第旋转的非互易性。通过光纤回波反射的光能够被光隔离器很好的隔离。光隔离器主要利用磁光晶体的法拉第效应。光隔离器的特性是:正向插入损耗低,反向隔离度高,回波损耗高。
它的作用是防止光路中由于各种原因产生的后向传输光对光源以及光路系统产生的不良影响。例如,在半导体激光源和光传输系统之间安装一个光隔离器,可以在很大程度上减少反射光对光源的光谱输出功率稳定性产生的不良影响。在高速直接调制、直接检测光纤通信系统中,后向传输光会产生附加噪声,使系统的性能劣化,这也需要光隔离器来消除。在光纤放大器中的掺杂光纤的两端装上光隔离器,可以提高光纤放大器的工作稳定性,如果没有它,后向反射光将进入信号源(激光器)中,引起信号源的剧烈波动。在相干光长距离光纤通信系统中,每隔一段距离安装一个光隔离器,可以减少受激布里渊散射引起的功率损失。
光隔离器原理图
光隔离器种类繁多,包括在线式光隔离器,自由空间光隔离器等。国内部分1310/1480/1550nm偏振无关光隔离器内部设计针对单模光纤中两种正交的偏振态分别处理的工艺,保证整个器件的偏振无关特性。单极器件具有较低的插入损耗,双级器件有极高的光隔离度,适合于不同的应用场合,主要应用于光纤放大器,光纤激光器等。
隔离器在光纤激光器中的应用
与常见的光纤通信系统中使用的较低功率光隔离器相比,在较高的激光功率下,光隔离器的设计及制作也呈现出一些不同之处,这也是在高功率器件的设计研发中需要解决的主要问题。
光学元件在高功率密度激光辐射作用下的损伤问题。这个问题不仅在高功率光隔离器中存在,就是在其他高功率光器件的设计制作过程中也同样要面对。为了解决此问题。
首先需要在产品的制作及测试过程中保证良好的环境洁净度并选用损伤阈值较高的光学器件及光学薄膜,当然这也受到产品成本的制约。因为空气中的微小颗粒如果粘附在光学表面将极大降低光学表面的激光损伤阈值,这些微小颗粒对激光的吸收比较大,容易导致颗粒附近能量集中,从而导致光学表面薄膜损伤甚至面损伤,在元件表面出现麻点甚至小坑而使器件失效。
其次,由于在通常情况下光学元件内部的损伤阈值要比其表面的激光损伤阈值高很多,所以元件表面的激光功率密度也就决定了整个器件抗激光损伤的能力,尤其在脉冲工作的情况下更是如此。这时可以通过光学变换的方法设法使光学元件表面的光斑面积扩大的方法来提高损伤阈值,例如扩芯光纤方法以及扩束透镜光纤方法等就是利用这个原理工作的,或者通过激光脉冲展宽的方法变相地降低激光功率密度,通过避免激光能量在空间和时间上的集中能够有效地提高产品的抗激光损伤性能。
高功率器件的热影响及散热设计。因为高功率器件工作在较高的功率下,与低功率器件相比,更容易发热,不可避免地会受到温度上升的影响,所以器件的性能受到材料热特性以及散热设计的影响比较严重。通常旋光晶体的旋光特性容易受到温度的影响,如果在器件工作时由于所吸收激光能量的积累而导致内部温度出现较大上升,就会使得旋光晶体对光偏振面的旋转角度偏离正常值而导致性能明显下降,严重时甚至会导致器件损坏。
另外,永磁体在高温下工作也更容易发生磁场减弱和退磁现象,甚至出现磁场的不可逆损失,所以高温对永磁体的稳定工作也是不利的;而且,在特高光功率的情况下,光学元件的温度会出现较大上升,由于热量从内部向表面传递,其内部的温度必然高于其表面的温度,这样就会在光学元件内部出现温度梯度和热应力,导致光束横截面内部中心的折射率和边缘的折射率变化幅度不同,从而出现折射率差,也就是出现了类透镜效应,这将会改变光束的传播特性,导致光束质量严重下降,严重影响器件正常工作甚至导致损坏。
因此,必须采取有效的措施减少对激光的吸收并有效散热。减少对激光的吸收要求选用吸收系数较小的光学材料、减小光在元件内部传输的距离、设计合理的结构,有效散热就要求在热量可能出现积累的地方提供有效的传热路径并散热,根据功率的大小可以采取被动散热或者主动散热的方法。万瓦级光隔离器设计中就采用板条形状的旋光晶体以提高器件的散热控温能力。
高功率隔离器的磁场设计。高功率光隔离器设计中的另一个关键是磁场及磁体的设计及选择。一般情况下,光隔离器都是利用磁致旋光效应工作的,所以必须在旋光晶体上加合适的磁场。为了节能以及方便使用,一般都采用强永磁材料来产生所需的磁场,这时磁场及磁体的选择和设计就非常重要,对器件的性能和成本影响很大。通常情况下都要求在旋光晶体的空间内提供较强的均匀磁场,这样就能够减小旋光晶体的尺寸,获得较高的性能价格比,所以就要求在不明显增加器件体积的情况下设计选择合适的磁体以获得较强的均匀磁场。具体设计中可通过选择磁性能较强的磁体,并采用合适的形状及体积,获得所需磁场。
高功率隔离器的装配工艺。高功率光隔离器要求能够长期稳定工作在恶劣的环境下,这就对器件的结构以及装配等工艺提出了很高的要求。设计良好的结构及装配工艺能够有效减小光学元器件内部的应力,从而提高产品的性能及稳定性,使得器件能够长期稳定可靠工作。隔离器结构设计中主要需要解决两个问题:首先是光学元器件的装配,要求稳定可靠,能够有效散热控温;其次需要牢固可靠装配强永磁铁,随着磁体设计制造能力的提高,器件中可能采用较复杂形状的多块磁体组合来提供较强的均匀磁场,而磁体之间较强的磁力就要求设计合适的装配工艺方法来可靠装配磁体,并要求在装配过程中不会导致磁体损坏或者退磁。这些都需要在实践中积累并提高。
隔离器市场规模及发展趋势
2012---2018年全球光纤激光器隔离器市场规模(单位:百万美元)
据O统计,2014年,全球光纤激光器隔离器市场规模约为1997万美元,比2013年的1890万美元同比增长了5.65%。同时,预计2015年市场销售规模将达到2163万美元,同比增长8.28%。未来,随着国内企业大功率隔离器的发展,国内市场的增长率将会高于国际市场。
免责声明
① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使
用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。
网友点评
0 条相关评论
热门资讯
精彩导读
关注我们
关注微信公众号,获取更多服务与精彩内容