阅读 | 订阅
阅读 | 订阅
超快激光器

超快激光--激光的未来

星之球激光 来源:光学期刊2015-08-05 我要评论(0 )   

  激光科技的最新前沿之一是超强超快激光。超强即超高的功率和功率密度(指单位面积上的功率),目前一个激光系统甚至可产生高达

激光科技的最新前沿之一是超强超快激光。超强即超高的功率和功率密度(指单位面积上的功率),目前一个激光系统甚至可产生高达1015瓦的峰值功率,而全世界电网的平均功率只不过1012瓦数量级;超快即极短的时间尺度,目前激光脉冲最短不过几个飞秒(10-15),光在1飞秒内仅仅传播0.3微米。

近年来新型小型化超强超快激光技术的迅猛发展,为人类提供了全新的实验手段与极端的物理条件。这种在实验室中创造的极端物理条件,目前还只有在核爆中心、恒星内部、或是黑洞边缘才能找到。在当今超强超快激光技术已经提供并将由于其进一步发展而能提供的越来越强并越来越快的光场条件下,激光与各种形态物质之间的相互作用,将进入到前所未有的高度非线性与相对论性起主导作用的强场超快范围,并将进一步把光与物质的相互作用研究深入到更深的物质层次,甚至光与真空的相互作用,由此开创了超强超快激光这一全新的现代科学技术前沿领域。

输出功率大于1太瓦,脉宽小于1皮秒,可聚焦激光功率密度大于1017/厘米2的小型化超强超快激光的发展研究,是超强超快激光研究广泛深入开展的基础和推动力。

近十几年来,由于啁啾脉冲放大(chirped pulse amplification,简称CPA)技术的提出和应用,宽带激光晶体材料(如掺钛蓝宝石)的出现,以及克尔透镜锁模技术的发明,使超强超快激光技术得到迅猛发展。小型化飞秒太瓦(1012)甚至更高数量级的超强超快激光系统已在各国实验室内建成并发挥重要作用。最近,更短脉冲和更高功率的激光输出,如直接由激光振荡器产生的短于5飞秒的激光脉冲,小型化飞秒100太瓦级超强超快激光系统,以及CPA技术应用到传统大型钕玻璃激光装置上获得1拍瓦(1015)级激光输出已有报道,激光功率密度达到10191020/厘米2的超强超快激光与物质相互作用研究也已开始进行。

传统的激光放大采用直接的行波放大,而对超短激光脉冲来说,随着能量的提高,其峰值功率将很快增加,并出现各种非线性效应及增益饱和效应,从而限制了能量的进一步放大。

CPA技术的原理是,在维持光谱宽度不变的情况下通过色散元件将脉冲展宽好几个数量级,形成所谓的啁啾脉冲。这样,在放大过程中,即使激光脉冲的能量增加很快,其峰值功率也可以维持在较低水平,从而避免出现非线性效应及增益饱和效应,保证激光脉冲能量的稳定增长。当能量达到饱和放大可获得的能量之后,借助与脉冲展宽时色散相反的元件将脉冲压缩到接近原来的宽度,即可使峰值功率大大提高。

为了突破CPA技术的一些局限性,目前国际上正在积极探索发展新一代超强超快激光的新原理与新方法,如啁啾脉冲光学参量放大(OPCPA)原理,目标是创造更强更快的强场超快极端物理条件,特别是获得大于(等于)1021/厘米2的可聚焦激光光强。OPCPA充分发挥了啁啾脉冲放大与光学参量放大各自的优点,是国际上近年来提出的发展超强超快激光的全新技术途径。

OPCPA原理目前还处于中等功率层次上的预研阶段,但却蕴涵着强大的生命力。此外,超强超快激光光束质量的优化、时空轮廓的整形与控制,周期脉宽小于10飞秒的超短激光脉冲的产生、有效放大与性能优化,也是今后持续创新发展的主要方向。

超强超快激光不仅具有重大的前沿学科意义,将创造出全新的实验室尺度,即所谓台式的综合性极端条件的科学技术,从而直接推动激光科学与现代光学、原子分子物理、等离子体物理、高能物理与核物理、凝聚态物理、天体物理、理论物理以及非线性科学等一大批基础学科的发展,而且在当代一些重要高技术领域的创新发展中,如突破飞秒壁垒的亚飞秒乃至阿秒(10-18)科学新原理、激光核聚变快点火新概念、激光引发的台式化聚变中子源新方案、小型化超高梯度粒子加速器新机制、台式超短波长超快相干辐射新途径等方面,也有着不可替代的推动作用。

目前,在远比传统装置小型化的台式激光系统上已经产生了高重复频率的超短脉冲(通常是10-13秒甚至更短)太瓦甚至更高数量级的激光输出。激光经聚焦达到的光强在过去的十年里已提高了五六个数量级,达到了10191020/厘米2。不久,将会达到创记录的1021/厘米2,从而创造出实验室尺度的极端物理条件。1021/厘米2的光强,产生的局域电场将高达1012/厘米,相当于氢原子第一玻尔轨道处库仑场强的170;相应的磁场将达到105特的超强范围;相应的能量密度已在3×1010/厘米3以上,与温度为10千电子伏的黑体的能量密度相当;同时,将产生巨大的光压,接近1017帕。在如此高的激光场中,电子的振荡动能将高于10兆电子伏(对于波长为1.06微米激光),大大超过电子自身静止质量(0.5兆电子伏),而电子的加速度也将达到1022/2,即1021g(重力加速度)的数量级,高度非线性与相对论效应已成为主导。

本领域的早期研究已经表明,强场激光与原子、分子的相互作用导致隧道电离、势垒抑制电离、高阶奇次谐波、稳定化及分子的相位控制与库仑爆炸等相关新现象。应用于非线性问题的常规微扰方法已被非微扰理论所取代。目前,超强超快激光与原子的相互作用已进入到相对论效应起主导作用的新阶段,以至必须采用狄拉克方程才能正确处理相互作用的动力学行为。另一方面,现今获得的激光脉宽已小于10飞秒,最短达4飞秒,仅包含了1.5个光周期(对波长为800纳米的激光)。严格说,此时的光脉冲已不成为光波,失去了波动现象所特有的周期性特征。传统的适用于较长脉宽光与物质相互作用的理论已不再适用,从而开创出极端非线性相互作用的新理论。周期乃至亚周期量级脉冲的超强超快激光与各种形态物质的相互作用也将会导致一系列全新的物理现象与规律。寻求这些新现象、新规律,建立相关的新概念、新理论成为迫在眉睫的研究任务,是国际上超强超快激光科学研究领域争夺的重点。

超强超快激光与团簇、高温高密度等离子体、自由电子等特殊形态物质的相互作用也已成为新的研究方向,它不仅大大拓宽本学科领域的纵深发展,也将为相关重要高技术领域的创新发展提供新方案与新途径。

最近,实验研究已观察到多光子激发产生的带有大量内壳层空穴的电子组态反转的空心原子,这将为实现超短波长相干辐射开辟全新途径;超强超快激光与大尺寸原子团簇的相互作用首次成功引发了台式聚变,从而为台式化聚变新概念指明了前景。此外,超强超快激光与团簇的相互作用研究,有可能作为一种桥梁,帮助人们更加完整地认识光与物质的相互作用。

当光强大于(等于)1018/厘米2时,激光与电子的相互作用进入超相对论性强场范围。实验上已首次观察到:自由电子在真空中被加速到兆电子伏数量级的相对论能量;非线性汤姆孙散射及其所产生的约300飞秒、0.05纳米的超快硬X射线脉冲;多光子非线性康普顿散射。尤其引人注目的是首次观测到非弹性光子-光子散射产生正负电子对的强场量子电动力学现象。

基于非线性汤姆孙散射与康普顿散射的X光、γ光源的产生与应用,以及真空中亚周期脉宽超强超快激光场对电子的加速等,也是超强超快激光与自由电子相互作用研究中的热点课题。此外,在超强超快激光与稀薄等离子体相互作用中产生的尾波场实验中,也观察到比传统的高能粒子加速器的极限加速电场高出三个数量级以上的超高梯度加速场,从而为实现小型化的高能粒子加速器提出了新方案。

近年来,超强超快激光与高温高密度等离子体的相互作用,特别是相对论效应引起的高度非线性新现象、新规律的研究,也已引起国际学术界的高度重视。虽然目前已观测到超强超快激光产生巨大光压,推动临界密度面向前移动,从而形成等离子体通道等新现象,但涉及到10181020/厘米2数量级的超强超快激光与高温高密度等离子体的相互作用,如等离子体中凿孔效应、超热电子的产生、能谱控制与输运等基础性物理问题还有待于深入研究。显然,超强超快激光与高温高密度等离子体相互作用的研究不仅是本领域的重要研究内容之一,而且还有可能为激光核聚变等相关高技术领域的发展提供基础。

转载请注明出处。

激光器超快激光器
免责声明

① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0相关评论
精彩导读