阅读 | 订阅
阅读 | 订阅
金属钣金新闻

激光领域加工方法的新进展

星之球科技 来源:华工激光2012-01-06 我要评论(0 )   

(一)激光快速成型 激光快速成型技术是激光技术与计算机技术相结合的一项高新制造技术,主要功能是将三维数据快速转化成实体,具有很大效益。其基本原理是先在计算机中生...

(一)激光快速成型
激光快速成型技术是激光技术与计算机技术相结合的一项高新制造技术,主要功能是将三维数据快速转化成实体,具有很大效益。其基本原理是先在计算机中生成产品的CAD三维实体模型,再将它“切成”规定厚度的片层数据(变换成一系列二维图形数据),用激光切割或烧结办法将材料进行选区逐层叠加,最终形成实体模型。成型原理如图2所示。

 

逐层叠加有以下几种方法:

1.液相树脂固化法(SL)。材质是光敏树脂,紫外波段激光作平面选区扫描照射,使树脂按指定区域固化(悬空部分需设支撑)。机床作下沉运动,使已成型部分浸没于液面之下。这种方法的优点是零件表面光滑,变形小;缺点是强度低,树脂价高且保存期短。

2.选区烧结法(SLS)。材质有石蜡、塑料、尼龙、陶瓷、包覆金属和裸金属等,均为粉末状态。用50~100W的CO 2 激光器作烧结工具,激光束作二维选区扫描,使粉末“烧结”成型。机床须具备送粉、铺粉、刮平及预热等功能。这种方法价格便宜,精度较高(±0.1mm),可直接代替木模制砂型。金属零件的快速制造,金属粉末烧结的关键是防氧化和热传导,一种方法是在金属粉末外涂覆粘合剂,用激光选区照射,粘合剂热溶粘接成型后,将零件由粉末中取出,再往缝隙中灌注金属最后制成零件。另一种新研究的方法是用无涂覆的金属粉末直接烧结制造零件,如用铜、镍或铝粉,颗粒度在22.5~90μ m间用600W的YAG激光烧结。采用这种方法加工的零件材质会出现空隙,为改善空隙,也有采用选区激光直接喷涂叠加成型,原材料为粉状Inconel625,用3kW射频激励的CO 2 激光作光源。

3.叠层粘接法(LOM)。材质是纸,经背面涂粘接剂等处理。选用25~50W的 CO 2 激光平面切割机构,机床完成纸带的送进铺平及滚压(粘接)等功能。成型零件尺寸较大,强度较高,但精度较低,腔形零件腔内排废纸难,零件抗潮性差。为此,采用后置表面涂覆环氧加铝粉处理,可大大提高纸质的耐温、耐潮湿变形和强度等性能。

快速成型零件还有几种不用激光作工具的方法,如三维打印(FDM)法,固基光敏液相掩模造模造型(SGC)法以及电弧或喷涂添加法等。

上述诸多快速成型法为零件由设计到生产提供了经济、准确、快速的工艺路线。

(二)激光成形与校形
激光成型和校形是通过激光对材料局部加热产生的热应力,使板材零件发生形变的加工方法。根据对局部的均匀和不均匀的加热和冷却方式,可加工不同形状的零件(如图3所示)。

 

该加工方法十分经济,通过选择不同的激光参数,如波长、作用时间、功率等可加工所有材料,适合于许多领域,特别是微电子工业。

(三)微细加工
在电子、仪表、航空航天工业中,激光加工可以高效率高质量地完成微细小孔、划片微调、切割、焊接以及标记等加工,其中尤以准分子激光的应用最为广泛。由于材料对紫外波吸收率高,准分子激光脉宽窄,因而有极高的功率密度。准分子激光除作常规的钻、切、划加工外,还可用掩模法直接在工件上生成图案。激光辐照的地方,材料被光化学的消融作用而除去,无论钻孔、切割或刻划,都是直壁尖角,没有热影响区。加工尺寸小,可达亚微米量级,精度取决于掩模,效率取决于激光的功率。 掩模法又有工件表面直接掩模和掩模投影两种,如图4所示。近期在微细加工领域开发激光清洗和激光作为夹持工具(镊子)的研究。激光清洗是指去除超净超光滑表面污染微粒,其原理是激光能量被微粒或表面或人为的清洗介质(如水)吸收后产生爆炸性汽化时,把微粒从表面上除去。该法可有效地用于半导体器件、激光陀螺的研制中。激光镊子主要用于有机材料的 微粒搬运和固定,其原理是微米量级的有机微粒在激光的束腰处,要受一对极子力(当微粒1μ m时)或折射力(当微粒>1μ m时)的作用,这些力都是把微粒拉向激光的束腰(光最强处)中心处,因此,可借移动或固定激光束来夹持微粒。

 

(四)纳米材料的制备
纳米材料被称为21世纪新材料的基础,所谓纳米材料是指材料的颗粒直径在1~100nm之间的材料。当材料颗粒达到这个量值时,由于表面效应、小尺寸效应和量子效应,导致材料特性发生变化,如反射率和熔点下降,硬度增高等。应用激光技术可制备纳米材料。准分子激光对材料有很强的消融作用,如铝材在强激光照射下,表面出现等离子体云,注入氧气或氮气,便可生成Al 203或AlN的微粒,直径在3~7nm范围,每小时可产生十余毫克。

(五)激光复合加工
不同的激光复合或激光和其它能源共同对材料的复合加工,目前大多用于材料表面改性处理。日本新制铁公司用CO[_2]激光束和离子束,利用物理气相沉积技术(LPVD)制备超硬薄膜。图5是该装置的示意图。用LPVD先制得非晶态氮化硼,再用0.5~2.0kV辐照氮离子,则可生成超硬的立方氮化硼薄膜。两种激光复合加工也可取得特殊效果,如CO+KrF激光切割。可提高工效30%以上,用CO 2 激光切割木制商标模或雕刻木质、塑料等非金属装饰品,切口变黑。据日本刊物报道称,用准分子激光后续处理,还会恢复材料本色。同样,如用准分子激光或其他调整Q激光作精修工具,可大大提高激光加工的价值,因此激光复合加工是很有发展前途的加工方法。

 

转载请注明出处。

暂无关键词
免责声明

① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0相关评论
精彩导读