阅读 | 订阅
阅读 | 订阅
钢材/模具

模具的激光熔覆性能分析(上)

星之球激光 来源:慧聪网2012-03-28 我要评论(0 )   

对产品加工常用模具材料进行 激光 熔覆试验,以研究熔覆层深度与工艺参数的关系、显微硬度在横截面上的变化、合金元素的存在形式与分布状态、试样耐磨性能的变化趋势等...

  对产品加工常用模具材料进行激光熔覆试验,以研究熔覆层深度与工艺参数的关系、显微硬度在横截面上的变化、合金元素的存在形式与分布状态、试样耐磨性能的变化趋势等,探讨采用激光熔覆技术提高模具性能、延长模具寿命的可行性。

  (1)熔覆层深度。随着激光功率的提高,单道熔覆层深度增加较快,但功率达到1.3kW后,深度增加较少,基本上达到了极限深度。数据回归处理得到曲线拟合方程为D=-0.0929P2+0.9091P+0.776,PI(700,1300),D为熔覆层深度,mm;P为激光功率,W。当搭接率为10%并以不同的激光参数进行多道熔覆时,熔覆深度为1.65~2.62mm,不经激光预热时深度最不均匀,且熔覆材料中加入WC后,熔覆层的不均匀性更加严重,即加剧了熔覆层深度的不均匀性。

  (2)熔覆层硬度。无论哪种合金粉末和激光工艺,熔覆处理后表层硬度高,次表层的硬度最高,可以达到945HV0.2;熔覆合金粉末中加入25%的后,硬度并没有明显的提高。激光熔覆后,熔覆层的组织形态不均匀,表层为铸造组织形态,而次表层及靠近基体的熔池底部则为淬火组织,基体仍然保持原来的回火组织。因此硬度峰值出现在次表层,而不是在表面。熔覆层主要通过固溶体强化、细晶强化、第二相的弥散强化提高硬度。

  (3)耐磨性能。在相同的实验条件下,基体试样的磨损量最大,达到了39.4g,而激光熔覆表面的耐磨损性能大大提高,绝对磨损量最低只有9.3g,相对耐磨性最高可达到熔覆前的4.24倍,表明激光熔覆可以显著改善表面的耐磨损性能。熔覆合金中加入粉末前后表面的耐磨性能并没有明显变化。熔覆试样磨损表面上有许多小平面,还有与滑动方向一致的细长的划痕,说明在摩擦试验过程中,激光熔覆表面不仅受到了粘着磨损,还受到了磨粒磨损,试验测得的磨损量是这两种磨损综合作用的结果。

 

转载请注明出处。

暂无关键词
免责声明

① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0相关评论
精彩导读