为满足极端载荷工况,航空发动机、飞机等武器装备大量采用结构-功能一体化设计的复杂型腔构件,对传统开模具以及去除式制造技术提出新挑战。譬如,轻质点阵夹芯、空间曲面多孔结构、封闭多流道等复杂构件采用传统制造技术难以实现,而且研制任务重。如何实现新型航空设计的制造和打开其“设计束缚”的枷锁,迫切需要根据3D数模无需模具、快速响应直接制造复杂结构件的增材制造技术。
根据材料在沉积时的不同状态,金属激光增材制造技术可以分为二大类:第一类,金属材料在沉积过程中实时送入熔池,这类技术以激光近净成形制造(LENS)、金属直接沉积(DMD)技术为代表,由激光在沉积区域产生熔池并高速移动,材料以粉末或丝状直接送入高温熔池,熔化后逐层沉积,称之为激光直接沉积增材成形技术,该技术只能成形出毛坯,然后依靠数控加工达到其净尺寸;第二类,金属粉末在沉积前预先铺粉,这类技术以金属直接激光烧结(DMLS)、选区激光熔化(SLM)为代表,粉末材料预先铺展在沉积区域,其层厚一般为20~100μm,利用高亮度激光按照预先规划的扫描路径轨迹逐层熔化金属粉末,直接净成形出零件,称之为激光精密增材成形技术。
激光精密增材成形技术原理,是一种基于离散堆积成形思想的先进增材制造技术,无需模具,通过把零件3D模型沿一定方向离散成一系列有序的微米量级薄层,以激光为热源,根据每层轮廓信息逐层熔化金属粉末,直接制造出任意复杂形状的净成形零件,特别适合曲面型腔、悬空薄壁以及变截面等复杂结构制造,无需数控加工,仅需热处理和表面光整零件即可使用。该技术可解决复杂金属构件的难加工、周期长等技术瓶颈,可制造出传统方法无法加工的复杂零件,具有大幅减少制造工序、缩短生产周期、降低成本等特点。
激光精密增材成形技术的发展历程从低熔点非金属粉末烧结、低熔点包覆高熔点粉末烧结、高熔点粉末直接熔化成形等阶段。由美国德克萨斯大学奥斯汀分校的Carl R.Deckard在1986年最早申请专利,1988年研制成功了第一台激光增材制造设备,由DTM公司将其商业化,推出SLS Model125成形机,推出了Sintersation系列成形机。随后德国、英国、中国等国家成立一批激光粉末烧结公司,推出各自的烧结设备。
转载请注明出处。