阅读 | 订阅
阅读 | 订阅
金属钣金新闻

输出功率为21.5W的单端抽运Nd:YVO_4/LBO单频激光器

星之球科技 来源:中国激光2013-10-22 我要评论(0 )   

本文采用中心波长为888nm的激光二极管作为抽运源,减轻了Nd∶YVO4晶体中的热效应。通过合理的谐振腔设计,扩大激光晶体处的基模尺寸和振荡光在凹面腔镜处的入射角,减轻...

     本文采用中心波长为888nm的激光二极管作为抽运源,减轻了Nd∶YVO4晶体中的热效应。通过合理的谐振腔设计,扩大激光晶体处的基模尺寸和振荡光在凹面腔镜处的入射角,减轻了激光晶体内部的热效应和谐振腔像散,提高了激光器的输出功率。采用四镜环形腔选模的办法,获得稳定的高功率单频激光输出。在吸收的抽运功率为67.5W时,实现了最高功率为21.5W的532nm单频激光输出,其8h功率稳定性优于±1%,光束质量犕2<1.1,光光转换效率为31.9%。

 

  1、引  言

  全固态高功率单频绿光激光器可广泛应用于科学研究的各个领域,比如抽运钛宝石激光器或染料激光器,精确测量和高分辨率的激光光谱实验。然而,在高功率抽运的条件下,激光增益介质中会产生严重的热效应,这就限制了激光功率和光束质量的进一步提高。因此,目前高功率固态激光器研究的热点,主要是集中在研究激光晶体热效应特性和减轻激光晶体中的热效应上。减轻激光晶体热效应的方法包括采用复合增益介质,低掺杂晶体,双端抽运方式或者直接抽运的方式。

 

  目前已有多种方法能使激光器达到单纵模运转,例如用扭转模腔、短腔谐振、标准具选模及双折射滤光片选模等。但在设计高功率输出内腔倍频激光器时,大多仍是利用环形谐振腔,消除空间烧孔效应进行选模。然而,由于环形腔包含的腔内元件太多,因而增加了激光器的内腔损耗,不利于高功率单频激光器的获得。关于高功率单频激光器的研制,国外主要以美国的相干公司为代表,形成了VerdiV系列的单频绿光光源,在采用中心波长为808nm抽运源的情况下,其最高输出功率为18W;德国的ELS公司则采用薄片晶体,实现了最高输出功率为15W的单频绿光光源。在国内,山西大学光电研究所长期从事全固态单频激光器的研究工作,但是受激光晶体热效应的影响,限制了激光器输出功率的提高。

 

  本文采用楔形Nd∶YVO4晶体作为增益介质改善了激光器的稳定性,在单端抽运情况下,使用环形谐振腔选模技术实现了高功率单频绿光激光输出。采用中心波长为888nm的激光二极管(LD)作为抽运源,减轻了激光晶体的热效应。通过合理的环形谐振腔设计,尽量保证在增益介质处获得较大的基模尺寸并且缩小谐振腔腔镜处振荡光的入射角度,减轻了增益介质处的热效应和环形腔的像散,提高单频激光的输出功率。在吸收的抽运功率为67.5W时,单频绿光的最大输出功率达到了21.5W,犕2<1.1,光光转换效率为31.9%,光斑的椭圆率优于0.16,输出绿光8h功率稳定性优于±1%。

 

科学家们认为,他们的“维生素激光器”最终有望用作生物传感器来探测特定的疾病。美国塔夫斯大学的生物光子学专家费奥伦茨·奥门托教授认为,尽管这种维生素激光器令人激动,但实际应用可能还需等几年时间。

 

  具有量子特性的海藻

  奥地利维也纳大学的研究人员正在研究简单的水中生物,以便进行一项经典的物理学实验——杨氏双缝干涉实验。杨氏双缝干涉实验被认为是物理学史上最美丽的十大科学实验之一,因为其完美地展示了物理学中一个令人惊奇的原理:粒子能像波一样运动这一量子力学效应。

 

  杨氏双缝干涉实验表明,电子等很多粒子都具有这一效应。当粒子撞击一块有两个开口的屏幕(双缝)时,人们起初认为,粒子会通过其中的一条缝,在另外一边的一块屏幕上制造出两个完全不同的顶点。但结果表明,这些粒子会像波一样同时通过双缝,且当双缝之间的间隙同粒子的波长差不多时,另一边的屏幕上会出现一种干涉图案。

 

  科学家们惊奇地发现,如果双缝足够小而且探测方法足够精确的话,比电子更大的粒子甚至分子也会出现这种现象。

 

  尽管人们需要昂贵的纳米设备来制造足够小且足够精确的双缝来进行这类实验,但维也纳大学的科学家们现在证明,透明双肋藻的骨架上布满了间距为200纳米的小孔,其可以很好地做到这一点。这样,人们几乎不费吹灰之力,就可以使用从水中免费获得的工具来展示量子属性了。

 

  混合太阳能技术

  美国能源部下属的能源高级研究计划署(ARPA-E)表示,目前太阳能正变得越来越便宜,但其独有的间歇性使其只能在某些时段某些地方展“身手”,仅占美国总能耗的5%。

 

  有鉴于此,ARPA-E将投入3000万美元,对几个让光伏技术和太阳光热技术“联姻”的示范项目提供资助,这样的“混合太阳能”技术有望在晚上和阴天都工作,相关研究目前还处于初始阶段。

 

  有些光热电站需要将太阳光集中在细小且超高效的太阳能电池内,但聚集的太阳光产生的热会消散在大气中。如果这些热能被收集起来,它们就能被存储起来以供日后发电使用。不过做到这一点,需要比较高的温度,而高温会破坏太阳能电池,研究人员正在研制耐高温能力更强的太阳能电池。

 

  另一种可行的办法是将太阳光光谱分开。太阳能电池很擅长将某些光转化为电,但对另一些光波则无能为力。人们可以让无法被有效利用的光另谋出路,用其来加热水并产生蒸汽。据美国麻省理工学院《技术评论》杂志报道,塔尔萨大学的机械工程学教授托德·奥塔尼卡正在践行这一理念。他利用悬浮在透明液体中的纳米粒子来吸收太阳光光谱中波长较长的光以产生热并存储起来,而另外一部分波长较短的光则通过纳米粒子到达一块太阳能电池内从而变成电力。纳米钻石温度计

 

  科学家们目前已经拥有一整套显微技术,可以方便地观察到细胞内部发生的事情,但他们却没有办法精度地测量细胞内的温度变化,而这样的测量结果或许有助于加强我们对于受温度影响非常大的基因表达和细胞新陈代谢等生物机制的理解。

 

  为此,美国哈佛大学的科学家们用细小的钻石晶体制造出一种纳米温度计,因为独一无二的量子属性,其在测量温度变化时的精度高达百分之二摄氏度。

 

  他们将这一钻石温度计同金纳米粒子(金纳米粒子被激光激发后,可以作为发热元件使用)一起注入活体细胞内,细胞内部的温度变化可以由纳米钻石发射出的荧光光谱标示出来。

 

  这种纳米钻石温度计除了可以为科学家们提供细胞生物学的新信息外,还能帮助研究人员研发一些与控制加热有关的疗法,比如杀死恶性肿瘤等。

 

 

转载请注明出处。

暂无关键词
免责声明

① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0相关评论
精彩导读