阅读 | 订阅
阅读 | 订阅
轨道交通新闻

历程:X射线激光器推动晶体学不断前进

星之球科技 来源:科学网2014-02-12 我要评论(0 )   

1914年,德国科学家Max von Laue因发现晶体如何衍射X射线而摘得诺贝尔物理学奖桂冠,这一发现直接推动了X射线晶体学的出现。从那时以来,研究人员利用衍射推算出了越来...

 1914年,德国科学家Max von Laue因发现晶体如何衍射X射线而摘得诺贝尔物理学奖桂冠,这一发现直接推动了X射线晶体学的出现。从那时以来,研究人员利用衍射推算出了越来越多复杂分子的晶体结构,从简单矿物到石墨烯等高科技材料,甚至还包括病毒。

 

  随着技术进步,发现的步伐也在加速:每年数以万计的新结构留下影像。上世纪90年代,蛋白质晶体图片的分辨率已经达到能分辨单个原子的临界阈值。

 

  Von Laue偶然间有了这样一个想法,当X射线穿过一个晶体时,由于原子的存在,它们将发生散射,然后就像拍打海岸的波浪那样互相干扰。在某些地方,一些波会加入到另一些波中,而在另一些地方则可能出现相互抵消。这样一来,衍射图样就能被用于计算那些分散原始X射线的原子的位置。1912年,Von Laue及其同事利用硫酸铜样本证明了这一理论。

 

  回顾晶体学的发展历程不难看出,X射线技术在其中扮演了重要角色,功能强大的X射线激光器推动着晶体学不断前进。

 

  直击物质“心脏”

 

  在美国加利福尼亚州帕洛阿尔托市附近的丘陵中,物理学家为世界上最快速的电子建造了一个“极端超越障碍训练场”。首先,粒子在一个长达3公里的真空管内加速到接近光速,然后它们将穿过一段磁铁,并被猛烈扭曲。最终出现强烈X射线暴,使它们足以穿透钢板。

 

  不过,SLAC的科学家对武器并不感兴趣。他们的机器是全世界功率最大的X射线自由电子激光(XFELs)发射器之一,也是研究物质结构的一种工具。结构生物学家尤其能从XFELs中获益匪浅。SLAC的激光器发射出的X射线脉冲短到足以捕获分子运动的类似频闪灯的图片,并且强烈到足以为生物分子集群成像——这是传统技术难以完成的。XFELs正赋予生物学家新的方法扫描潜在的药物标靶、探讨光合作用粒子的结构等。

 

  “毫无疑问,XFELs是颠覆性技术。”伊利诺伊州芝加哥大学晶体学家Keith Moffat说,“到目前为止,它远远超越了之前的技术,并正在改变人们做事的方式。”Moffat也是XFELs发射器科学顾问委员会成员。

 

  但XFELs也是备受争议的技术,尤其是SLAC的直线性连续加速器光源(LCLS)更是如此。LCLS是世界上首个也是最大的XFELs发射器。2002年,面对研究人员的频频质疑,美国能源部(DOE)牵头开始建造LCLS。当时许多人质疑:即使假设这个未经证实的技术能够工作,LCLS未来的科学产出是否值得投入4.14亿美元呢?

 

 

 2009年LCLS开始运行后,争论逐渐消失,Moffat提到,“它按时按预算工作了,并且更突出、更方便”。日本紧跟其后,建造了自己的XFEL设备,欧洲则计划了一个功率更大的设备,将于2015年启动。预计在未来几年中,全球对XFELs的投入将达数十亿美元。但要充分发挥其潜力,这些设备还必须克服更多的技术障碍,从推进功率到更好地处理产生的数据等。

 

  “物理学家、生物学家、激光科学家和高能密度学家—— 一个彻底的新团体正在形成,因为人们必须了解相关工作的所有程序。”瑞典乌普萨拉大学分子生物物理学家Janos Hajdu说,“很多发展必须统合在一起,以便完成这项工作。”

 

 

转载请注明出处。

暂无关键词
免责声明

① 凡本网未注明其他出处的作品,版权均属于激光制造网,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:激光制造网”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0相关评论
精彩导读